

Canu

Canu [http://github.com/marbl/canu] is a fork of the Celera Assembler designed for high-noise single-molecule sequencing (such as
the PacBio RSII or Oxford Nanopore MinION).

Publication

Koren S, Walenz BP, Berlin K, Miller JR, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation [http://doi.org/10.1101/gr.215087.116]. Genome Research. (2017).

Install

The easiest way to get started is to download a release [https://github.com/marbl/canu/releases]. If you encounter
any issues, please report them using the github issues [http://github.com/marbl/canu/issues] page.

Alternatively, you can also build the latest unreleased from github:

git clone https://github.com/marbl/canu.git
cd canu/src
make -j <number of threads>

Learn

	Quick Start - no experience or data required, download and assemble Escherichia coli today!

	FAQ - Frequently asked questions

	Canu tutorial - a gentle introduction to the complexities of canu.

	Canu pipeline - what, exactly, is canu doing, anyway?

	Canu Parameter Reference - all the parameters, grouped by function.

	Canu Command Reference - all the commands that canu runs for you.

	Canu History - the history of the Canu project.

Canu Quick Start

Canu specializes in assembling PacBio or Oxford Nanopore sequences. Canu operates in three phases:
correction, trimming and assembly. The correction phase will improve the accuracy of bases in
reads. The trimming phase will trim reads to the portion that appears to be high-quality sequence,
removing suspicious regions such as remaining SMRTbell adapter. The assembly phase will order the
reads into contigs, generate consensus sequences and create graphs of alternate paths.

For eukaryotic genomes, coverage more than 20x is enough to outperform current hybrid methods,
however, between 30x and 60x coverage is the recommended minimum. More coverage will let Canu use
longer reads for assembly, which will result in better assemblies.

Input sequences can be FASTA or FASTQ format, uncompressed or compressed with gzip (.gz), bzip2
(.bz2) or xz (.xz). Note that zip files (.zip) are not supported.

Canu can resume incomplete assemblies, allowing for recovery from system outages or other abnormal
terminations. On each restart of Canu, it will examine the files in the assembly directory to
decide what to do next. For example, if all but two overlap tasks have finished, only the two that
are missing will be computed. For best results, do not change Canu parameters between restarts.

Canu will auto-detect computational resources and scale itself to fit, using all of the resources
available and are reasonable for the size of your assembly. Memory and processors can be explicitly
limited with with parameters maxMemory and maxThreads. See section Execution Configuration
for more details.

Canu will automatically take full advantage of any LSF/PBS/PBSPro/Torque/Slrum/SGE grid available,
even submitting itself for execution. Canu makes heavy use of array jobs and requires job
submission from compute nodes, which are sometimes not available or allowed. Canu option
useGrid=false will restrict Canu to using only the current machine, while option
useGrid=remote will configure Canu for grid execution but not submit jobs to the grid.
See section Execution Configuration for more details.

The Canu Tutorial has more background, and the Canu FAQ has a wealth of practical advice.

Assembling PacBio or Nanopore data

Pacific Biosciences released P6-C4 chemistry reads for Escherichia coli K12. You can download them
from their original release [https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly], but note that you
must have the SMRTpipe software [http://www.pacb.com/support/software-downloads/] installed to
extract the reads as FASTQ. Instead, use a FASTQ format 25X subset [http://gembox.cbcb.umd.edu/mhap/raw/ecoli_p6_25x.filtered.fastq] (223MB). Download from the command line
with:

curl -L -o pacbio.fastq http://gembox.cbcb.umd.edu/mhap/raw/ecoli_p6_25x.filtered.fastq

There doesn’t appear to be any “official” Oxford Nanopore sample data, but the Loman Lab [http://lab.loman.net/] released a set of runs [http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/], also for Escherichia coli K12.
This is early data, from September 2015. Any of the four runs will work; we picked MAP-006-1 [http://nanopore.s3.climb.ac.uk/MAP006-PCR-1_2D_pass.fasta] (243 MB). Download from the command
line with:

curl -L -o oxford.fasta http://nanopore.s3.climb.ac.uk/MAP006-PCR-1_2D_pass.fasta

By default, Canu will correct the reads, then trim the reads, then assemble the reads to unitigs.
Canu needs to know the approximate genome size (so it can determine coverage in the input reads)
and the technology used to generate the reads.

For PacBio:

canu \
 -p ecoli -d ecoli-pacbio \
 genomeSize=4.8m \
 -pacbio-raw pacbio.fastq

For Nanopore:

canu \
 -p ecoli -d ecoli-oxford \
 genomeSize=4.8m \
 -nanopore-raw oxford.fasta

Output and intermediate files will be in directories ‘ecoli-pacbio’ and ‘ecoli-nanopore’,
respectively. Intermediate files are written in directories ‘correction’, ‘trimming’ and
‘unitigging’ for the respective stages. Output files are named using the ‘-p’ prefix, such as
‘ecoli.contigs.fasta’, ‘ecoli.unitigs.gfa’, etc. See section Outputs for more details on
outputs (intermediate files aren’t documented).

Assembling With Multiple Technologies and Multiple Files

Canu can use reads from any number of input files, which can be a mix of formats and technologies.
We’ll assemble a mix of 10X PacBio reads in two FASTQ files and 10X of Nanopore reads in one FASTA
file:

curl -L -o mix.tar.gz http://gembox.cbcb.umd.edu/mhap/raw/ecoliP6Oxford.tar.gz
tar xvzf mix.tar.gz

canu \
 -p ecoli -d ecoli-mix \
 genomeSize=4.8m \
 -pacbio-raw pacbio.part?.fastq.gz \
 -nanopore-raw oxford.fasta.gz

Correct, Trim and Assemble, Manually

Sometimes, however, it makes sense to do the three top-level tasks by hand. This would allow trying
multiple unitig construction parameters on the same set of corrected and trimmed reads, or skipping
trimming and assembly if you only want corrected reads.

We’ll use the PacBio reads from above. First, correct the raw reads:

canu -correct \
 -p ecoli -d ecoli \
 genomeSize=4.8m \
 -pacbio-raw pacbio.fastq

Then, trim the output of the correction:

canu -trim \
 -p ecoli -d ecoli \
 genomeSize=4.8m \
 -pacbio-corrected ecoli/ecoli.correctedReads.fasta.gz

And finally, assemble the output of trimming, twice, with different stringency on which overlaps to
use (see correctedErrorRate):

canu -assemble \
 -p ecoli -d ecoli-erate-0.039 \
 genomeSize=4.8m \
 correctedErrorRate=0.039 \
 -pacbio-corrected ecoli/ecoli.trimmedReads.fasta.gz

canu -assemble \
 -p ecoli -d ecoli-erate-0.075 \
 genomeSize=4.8m \
 correctedErrorRate=0.075 \
 -pacbio-corrected ecoli/ecoli.trimmedReads.fasta.gz

Note that the assembly stages use different ‘-d’ directories. It is not possible to run multiple
copies of canu with the same work directory.

Assembling Low Coverage Datasets

We claimed Canu works down to 20X coverage, and we will now assemble a 20X subset of S. cerevisae [http://gembox.cbcb.umd.edu/mhap/raw/yeast_filtered.20x.fastq.gz] (215 MB). When assembling, we
adjust correctedErrorRate to accommodate the slightly lower
quality corrected reads:

curl -L -o yeast.20x.fastq.gz http://gembox.cbcb.umd.edu/mhap/raw/yeast_filtered.20x.fastq.gz

canu \
 -p asm -d yeast \
 genomeSize=12.1m \
 correctedErrorRate=0.105 \
 -pacbio-raw yeast.20x.fastq.gz

Trio Binning Assembly

Canu has support for using parental short-read sequencing to classify and bin the F1 reads (see Trio Binning manuscript [https://www.biorxiv.org/content/early/2018/02/26/271486] for details). This example demonstrates the functionality using a synthetic mix of two Escherichia coli datasets. First download the data:

curl -L -o K12.parental.fasta https://gembox.cbcb.umd.edu/triobinning/example/k12.12.fasta
curl -L -o O157.parental.fasta https://gembox.cbcb.umd.edu/triobinning/example/o157.12.fasta
curl -L -o F1.fasta https://gembox.cbcb.umd.edu/triobinning/example/pacbio.fasta

canu \
 -p asm -d ecoliTrio \
 genomeSize=5m \
 -haplotypeK12 K12.parental.fasta \
 -haplotypeO157 O157.parental.fasta \
 -pacbio-raw F1.fasta

The run will first bin the reads into the haplotypes (ecoliTrio/haplotype/haplotype-*.fasta.gz) and provide a summary of the classification in ecoliTrio/haplotype/haplotype.log:

-- Processing reads in batches of 100 reads each.
--
-- 119848 reads 378658103 bases written to haplotype file ./haplotype-K12.fasta.gz.
-- 308353 reads 1042955878 bases written to haplotype file ./haplotype-O157.fasta.gz.
-- 4114 reads 6520294 bases written to haplotype file ./haplotype-unknown.fasta.gz.

Next, the haplotypes are assembled in ecoliTrio/asm-haplotypeK12/asm-haplotypeK12.contigs.fasta and ecoliTrio/asm-haplotypeO157/asm-haplotypeO157.contigs.fasta. By default, if the unassigned bases are > 5% of the total, they are included in both haplotypes. This can be controlled with the hapUnknownFraction option.

As comparison, you can try co-assembling the datasets instead:

canu \
 -p asm -d ecoliHap \
 genomeSize=5m \
 corOutCoverage=200 "batOptions=-dg 3 -db 3 -dr 1 -ca 500 -cp 50" \
-pacbio-raw F1.fasta

and compare the continuity/accuracy.

Consensus Accuracy

Canu consensus sequences are typically well above 99% identity for PacBio datasets. Nanopore accuracy varies depending on pore and basecaller version, but is typically above 98% for recent data. Accuracy can be improved by
polishing the contigs with tools developed specifically for that task. We recommend Quiver [http://github.com/PacificBiosciences/GenomicConsensus] for PacBio and Nanopolish [http://github.com/jts/nanopolish] for Oxford Nanpore data.
When Illumina reads are available, Pilon [http://www.broadinstitute.org/software/pilon/]
can be used to polish either PacBio or Oxford Nanopore assemblies.

Canu FAQ

	What resources does Canu require for a bacterial genome assembly? A mammalian assembly?

	How do I run Canu on my SLURM / SGE / PBS / LSF / Torque system?

	My run stopped with the error 'Mhap precompute jobs failed'

	My run stopped with the error 'Failed to submit batch jobs'

	My run of Canu was killed by the sysadmin; the power going out; my cat stepping on the power button; et cetera. Is it safe to restart? How do I restart?

	My genome size and assembly size are different, help!

	What parameters should I use for my reads?

	Can I assemble RNA sequence data?

	My assembly is running out of space, is too slow?

	My assembly continuity is not good, how can I improve it?

	What parameters can I tweak?

	My asm.contigs.fasta is empty, why?

	Why is my assembly is missing my favorite short plasmid?

	Why do I get less corrected read data than I asked for?

	What is the minimum coverage required to run Canu?

	Can I use Illumina data too?

	My circular element is duplicated/has overlap?

	My genome is AT (or GC) rich, do I need to adjust parameters? What about highly repetitive genomes?

	How can I send data to you?

What resources does Canu require for a bacterial genome assembly? A mammalian assembly?

Canu will detect available resources and configure itself to run efficiently using those
resources. It will request resources, for example, the number of compute threads to use, Based
on the genome size being assembled. It will fail to even start if it feels there are
insufficient resources available.

A typical bacterial genome can be assembled with 8GB memory in a few CPU hours - around an hour
on 8 cores. It is possible, but not allowed by default, to run with only 4GB memory.

A well-behaved large genome, such as human or other mammals, can be assembled in 10,000 to
25,000 CPU hours, depending on coverage. A grid environment is strongly recommended, with at
least 16GB available on each compute node, and one node with at least 64GB memory. You should
plan on having 3TB free disk space, much more for highly repetitive genomes.

Our compute nodes have 48 compute threads and 128GB memory, with a few larger nodes with up to
1TB memory. We develop and test (mostly bacteria, yeast and drosophila) on laptops and desktops
with 4 to 12 compute threads and 16GB to 64GB memory.

How do I run Canu on my SLURM / SGE / PBS / LSF / Torque system?

Canu will detect and configure itself to use on most grids. Canu will NOT request explicit time limits or
queues/partitions. You can supply your own grid options, such as a partition on SLURM, an account code
on SGE, and/or time limits with gridOptions="<your options list>" which will passed to every job
submitted by Canu. Similar options exist for every stage of Canu, which could be used to, for example,
restrict overlapping to a specific partition or queue.

To disable grid support and run only on the local machine, specify useGrid=false

It is possible to limit the number of grid jobs running at the same time, but this isn’t
directly supported by Canu. The various gridOptions parameters
can pass grid-specific parameters to the submit commands used; see
Issue #756 [https://github.com/marbl/canu/issues/756] for Slurm and SGE examples.

My run stopped with the error 'Mhap precompute jobs failed'

Several package managers make a mess of the installation causing this error (conda and ubuntu in particular). Package managers don’t add much benefit to a tool like Canu which is distributed as pre-compiled binaries compatible with most systems so our recommended installation method is downloading a binary release. Try running the assembly from scratch using our release distribution and if you continue to encounter errors, submit an issue.

My run stopped with the error 'Failed to submit batch jobs'

The grid you run on must allow compute nodes to submit jobs. This means that if you are on a
compute host, qsub/bsub/sbatch/etc must be available and working. You can test this by
starting an interactive compute session and running the submit command manually (e.g. qsub
on SGE, bsub on LSF, sbatch on SLURM).

If this is not the case, Canu WILL NOT work on your grid. You must then set
useGrid=false and run on a single machine. Alternatively, you can run Canu with
useGrid=remote which will stop at every submit command, list what should be submitted. You
then submit these jobs manually, wait for them to complete, and run the Canu command again. This
is a manual process but currently the only workaround for grids without submit support on the
compute nodes.

My run of Canu was killed by the sysadmin; the power going out; my cat stepping on the power button; et cetera. Is it safe to restart? How do I restart?

Yes, perfectly safe! It’s actually how Canu runs normally: each time Canu starts, it examines
the state of the assembly to decide what it should do next. For example, if six overlap tasks
have no results, it’ll run just those six tasks.

This also means that if you want to redo some step, just remove those results from the assembly
directory. Some care needs to be taken to make sure results computed after those are also
removed.

Short answer: just rerun the _exact_ same command as before. It’ll do the right thing.

My genome size and assembly size are different, help!

The difference could be due to a heterozygous genome where the assembly separated some loci. It could also be because the previous estimate is incorrect. We typically use two analyses to see what happened. First, a BUSCO [https://busco.ezlab.org] analysis will indicate duplicated genes. For example this assembly:

INFO C:98.5%[S:97.9%,D:0.6%],F:1.0%,M:0.5%,n:2799
INFO 2756 Complete BUSCOs (C)
INFO 2740 Complete and single-copy BUSCOs (S)
INFO 16 Complete and duplicated BUSCOs (D)

does not have much duplication but this assembly:

INFO C:97.6%[S:15.8%,D:81.8%],F:0.9%,M:1.5%,n:2799
INFO 2732 Complete BUSCOs (C)
INFO 443 Complete and single-copy BUSCOs (S)
INFO 2289 Complete and duplicated BUSCOs (D)

does. We have had some success (in limited testing) using purge_haplotigs [https://bitbucket.org/mroachawri/purge_haplotigs] to remove duplication. Purge haplotigs will also generate a coverage plot which will usually have two peaks when assemblies have separated some loci.

What parameters should I use for my reads?

Canu is designed to be universal on a large range of PacBio (C2, P4-C2, P5-C3, P6-C4) and Oxford
Nanopore (R6 through R9) data. Assembly quality and/or efficiency can be enhanced for specific
datatypes:

	Nanopore R7 1D and Low Identity Reads

	With R7 1D sequencing data, and generally for any raw reads lower than 80% identity, five to
ten rounds of error correction are helpful:

canu -p r1 -d r1 -correct corOutCoverage=500 corMinCoverage=0 corMhapSensitivity=high -nanopore-raw your_reads.fasta
canu -p r2 -d r2 -correct corOutCoverage=500 corMinCoverage=0 corMhapSensitivity=high -nanopore-raw r1/r1.correctedReads.fasta.gz
canu -p r3 -d r3 -correct corOutCoverage=500 corMinCoverage=0 corMhapSensitivity=high -nanopore-raw r2/r2.correctedReads.fasta.gz
canu -p r4 -d r4 -correct corOutCoverage=500 corMinCoverage=0 corMhapSensitivity=high -nanopore-raw r3/r3.correctedReads.fasta.gz
canu -p r5 -d r5 -correct corOutCoverage=500 corMinCoverage=0 corMhapSensitivity=high -nanopore-raw r4/r4.correctedReads.fasta.gz

Then assemble the output of the last round, allowing up to 30% difference in overlaps:

canu -p asm -d asm correctedErrorRate=0.3 utgGraphDeviation=50 -nanopore-corrected r5/r5.correctedReads.fasta.gz

	Nanopore R7 2D and Nanopore R9 1D

	The defaults were designed with these datasets in mind so they should work. Having very high
coverage or very long Nanopore reads can slow down the assembly significantly. You can try the
overlapper=mhap utgReAlign=true option which is much faster but may produce less
contiguous assemblies on large genomes.

	Nanopore R9 2D and PacBio P6

	Slightly decrease the maximum allowed difference in overlaps from the default of 12% to 10.5%
with correctedErrorRate=0.105

	PacBio Sequel V2

	
Based on an A. thaliana dataset [http://www.pacb.com/blog/sequel-system-data-release-arabidopsis-dataset-genome-assembly/],
and a few more recent mammalian genomes, slightly increase the maximum allowed difference from the default of 4.5% to 8.5% with
correctedErrorRate=0.085 corMhapSensitivity=normal.

Only add the second parameter (corMhapSensivity=normal) if you have >50x coverage.

	PacBio Sequel V3

	The defaults for PacBio should work on this data.

	Nanopore flip-flop R9.4

	Based on a human dataset, the flip-flop basecaller reduces both the raw read error rate and the residual error rate remaining after Canu read correction. For this reason you can reduce the error tolerated by Canu. If you have over 30x coverage add the options: 'corMhapOptions=--threshold 0.8 --ordered-sketch-size 1000 --ordered-kmer-size 14' correctedErrorRate=0.105. This is primarily a speed optimization so you can use defaults, especially if your genome’s accuracy is not improved by the flip-flop caller.

Can I assemble RNA sequence data?

Canu will likely mis-assemble, or completely fail to assemble, RNA data. It will do a
reasonable job at generating corrected reads though. Reads are corrected using (local) best
alignments to other reads, and alignments between different isoforms are usually obviously not
‘best’. Just like with DNA sequences, similar isoforms can get ‘mixed’ together. We’ve heard
of reasonable success from users, but do not have any parameter suggestions to make.

Note that Canu will silently translate ‘U’ bases to ‘T’ bases on input, but NOT translate
the output bases back to ‘U’.

My assembly is running out of space, is too slow?

We don’t have a good way to estimate of disk space used for the assembly. It varies with genome size, repeat content, and sequencing depth. A human genome sequenced with PacBio or Nanopore at 40-50x typically requires 1-2TB of space at the peak. Plants, unfortunately, seem to want a lot of space. 10TB is a reasonable guess. We’ve seen it as bad as 20TB on some very repetitive genomes.

The most common cause of high disk usage is a very repetitive or large genome. There are some parameters you can tweak to both reduce disk space and speed up the run. Try adding the options corMhapFilterThreshold=0.0000000002 corMhapOptions="--threshold 0.80 --num-hashes 512 --num-min-matches 3 --ordered-sketch-size 1000 --ordered-kmer-size 14 --min-olap-length 2000 --repeat-idf-scale 50" mhapMemory=60g mhapBlockSize=500 ovlMerDistinct=0.975. This will suppress repeats more than the default settings and speed up both correction and assembly.

It is also possible to clean up some intermediate outputs before the assembly is complete to save space. If you already have a `*.ovlStore.BUILDING/1-bucketize.successs file in your current step (e.g. correct`), you can clean up the files under 1-overlapper/blocks. You can also remove the ovlStore for the previous step if you have its output (e.g. if you have asm.trimmedReads.fasta.gz, you can remove trimming/asm.ovlStore).

My assembly continuity is not good, how can I improve it?

The most important determinant for assembly quality is sequence length, followed by the repeat
complexity/heterozygosity of your sample. The first thing to check is the amount of corrected
bases output by the correction step. This is logged in the stdout of Canu or in
canu-scripts/canu.*.out if you are running in a grid environment. For example on a
haploid H. sapiens [https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SAMN02744161] sample:

-- BEGIN TRIMMING
--
...
-- In gatekeeper store 'chm1/trimming/asm.gkpStore':
-- Found 5459105 reads.
-- Found 91697412754 bases (29.57 times coverage).
...

Canu tries to correct the longest 40X of data. Some loss is normal but having output coverage
below 20-25X is a sign that correction did not work well (assuming you have more input coverage
than that). If that is the case, re-running with corMhapSensitivity=normal if you have >50X
or corMhapSensitivity=high corMinCoverage=0 otherwise can help. You can also increase the
target coverage to correct corOutCoverage=100 to get more correct sequences for assembly. If
there are sufficient corrected reads, the poor assembly is likely due to either repeats in the
genome being greater than read lengths or a high heterozygosity in the sample. Stay tuned for mor
information on tuning unitigging in those instances.

What parameters can I tweak?

For all stages:

	rawErrorRate is the maximum expected difference in an alignment of two _uncorrected_
reads. It is a meta-parameter that sets other parameters.

	correctedErrorRate is the maximum expected difference in an alignment of two _corrected_
reads. It is a meta-parameter that sets other parameters. (If you’re used to the
errorRate parameter, multiply that by 3 and use it here.)

	minReadLength and minOverlapLength. The defaults are to discard reads shorter than
1000bp and to not look for overlaps shorter than 500bp. Increasing minReadLength can
improve run time, and increasing minOverlapLength can improve assembly quality by removing
false overlaps. However, increasing either too much will quickly degrade assemblies by either
omitting valuable reads or missing true overlaps.

For correction:

	corOutCoverage controls how much coverage in corrected reads is generated. The default is
to target 40X, but, for various reasons, this results in 30X to 35X of reads being generated.

	corMinCoverage, loosely, controls the quality of the corrected reads. It is the coverage
in evidence reads that is needed before a (portion of a) corrected read is reported.
Corrected reads are generated as a consensus of other reads; this is just the minimum coverage
needed for the consensus sequence to be reported. The default is based on input read
coverage: 0x coverage for less than 30X input coverage, and 4x coverage for more than that.

For assembly:

	utgOvlErrorRate is essentially a speed optimization. Overlaps above this error rate are
not computed. Setting it too high generally just wastes compute time, while setting it too
low will degrade assemblies by missing true overlaps between lower quality reads.

	utgGraphDeviation and utgRepeatDeviation what quality of overlaps are used in contig
construction or in breaking contigs at false repeat joins, respectively. Both are in terms of
a deviation from the mean error rate in the longest overlaps.

	utgRepeatConfusedBP controls how similar a true overlap (between two reads in the same
contig) and a false overlap (between two reads in different contigs) need to be before the
contig is split. When this occurs, it isn’t clear which overlap is ‘true’ - the longer one or
the slightly shorter one - and the contig is split to avoid misassemblies.

For polyploid genomes:

Generally, there’s a couple of ways of dealing with the ploidy.

	Avoid collapsing the genome so you end up with double (assuming diploid) the genome
size as long as your divergence is above about 2% (for PacBio data). Below this
divergence, you’d end up collapsing the variations. We’ve used the following parameters
for polyploid populations (PacBio data):

corOutCoverage=200 "batOptions=-dg 3 -db 3 -dr 1 -ca 500 -cp 50"

This will output more corrected reads (than the default 40x). The latter option will be
more conservative at picking the error rate to use for the assembly to try to maintain
haplotype separation. If it works, you’ll end up with an assembly >= 2x your haploid
genome size. Post-processing using gene information or other synteny information is
required to remove redundancy from this assembly.

	Smash haplotypes together and then do phasing using another approach (like HapCUT2 or
whatshap or others). In that case you want to do the opposite, increase the error rates
used for finding overlaps:

corOutCoverage=200 correctedErrorRate=0.15

When trimming, reads will be trimmed using other reads in the same
chromosome (and probably some reads from other chromosomes). When assembling, overlaps
well outside the observed error rate distribution are discarded.

We typically prefer option 1 which will lead to a larger than expected genome size. We have had some success (in limited testing) using purge_haplotigs [https://bitbucket.org/mroachawri/purge_haplotigs] to remove this duplication.

For metagenomes:

The basic idea is to use all data for assembly rather than just the longest as default. The
parameters we’ve used recently are:

corOutCoverage=10000 corMhapSensitivity=high corMinCoverage=0 redMemory=32 oeaMemory=32 batMemory=200

For low coverage:

	For less than 30X coverage, increase the alllowed difference in overlaps by a few percent
(from 4.5% to 8.5% (or more) with correctedErrorRate=0.105 for PacBio and from 14.4% to
16% (or more) with correctedErrorRate=0.16 for Nanopore), to adjust for inferior read
correction. Canu will automatically reduce corMinCoverage to zero to correct as many
reads as possible.

For high coverage:

	For more than 60X coverage, decrease the allowed difference in overlaps (from 4.5% to 4.0%
with correctedErrorRate=0.040 for PacBio, from 14.4% to 12% with
correctedErrorRate=0.12 for Nanopore), so that only the better corrected reads are used.
This is primarily an optimization for speed and generally does not change assembly
continuity.

My asm.contigs.fasta is empty, why?

Canu creates three assembled sequence output files: <prefix>.contigs.fasta,
<prefix>.unitigs.fasta, and <prefix>.unassembled.fasta, where contigs are the primary
output, unitigs are the primary output split at alternate paths,
and unassembled are the leftover pieces.

The contigFilter parameter sets several parameters that control how small
or low coverage initial contigs are handled. By default, initial contigs with more than 50% of
the length at less than 3X coverage will be classified as ‘unassembled’ and removed from the
assembly, that is, contigFilter="2 0 1.0 0.5 3". The filtering can be disabled by changing
the last number from ‘3’ to ‘0’ (meaning, filter if 50% of the contig is less than 0X coverage).

Why is my assembly is missing my favorite short plasmid?

In Canu v1.6 and earlier only the longest 40X of data (based on the specified genome size) is
used for correction. Datasets with uneven coverage or small plasmids can fail to generate
enough corrected reads to give enough coverage for assembly, resulting in gaps in the genome or
even no reads for small plasmids. Set corOutCoverage=1000 (or any value greater than your
total input coverage) to correct all input data.

An alternate approach is to correct all reads (-correct corOutCoverage=1000) then assemble
40X of reads picked at random from the <prefix>.correctedReads.fasta.gz output.

More recent Canu versions dynamically select poorly represented sequences to avoid missing short
plasmids so this should no longer happen.

Why do I get less corrected read data than I asked for?

Some reads are trimmed during correction due to being chimeric or because there wasn’t enough
evidence to generate a quality corrected sequence. Typically, this results in a 25% loss.
Setting corMinCoverage=0 will report all bases, even low those of low quality. Canu will
trim these in its ‘trimming’ phase before assembly.

What is the minimum coverage required to run Canu?

For eukaryotic genomes, coverage more than 20X is enough to outperform current hybrid
methods. Below that, you will likely not assemble the full genome. The following
two papers have several examples.

	Koren et al. (2013) Reducing assembly complexity of microbial genomes with single-molecule sequencing [https://www.ncbi.nlm.nih.gov/pubmed/24034426]

	Koren and Walenz et al. (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation [https://www.ncbi.nlm.nih.gov/pubmed/28298431]

Can I use Illumina data too?

No. We’ve seen that using short reads for correction will homogenize repeats and
mix up haplotypes. Even though the short reads are very high quality, their length
isn’t sufficient for the true alignment to be identified, and so reads from other repeat
instances are used for correction, resulting in incorrect corrections.

My circular element is duplicated/has overlap?

This is expected for any circular elements. They can overlap by up to a read length due to how
Canu constructs contigs. Canu provides an alignment string in the GFA output which can be
converted to an alignment to identify the trimming points.

An alternative is to run MUMmer to get self-alignments on the contig and use those trim
points. For example, assuming the circular element is in tig00000099.fa. Run:

nucmer -maxmatch -nosimplify tig00000099.fa tig00000099.fa
show-coords -lrcTH out.delta

to find the end overlaps in the tig. The output would be something like:

1 1895 48502 50400 1895 1899 99.37 50400 50400 3.76 3.77 tig00000001 tig00000001
48502 50400 1 1895 1899 1895 99.37 50400 50400 3.77 3.76 tig00000001 tig00000001

means trim to 1 to 48502. There is also an alternate writeup [https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Circularizing-and-trimming].

My genome is AT (or GC) rich, do I need to adjust parameters? What about highly repetitive genomes?

On bacterial genomes, no adjustment of parameters is (usually) needed. See the next question.

On repetitive genomes with with a significantly skewed AT/GC ratio, the Jaccard estimate used by
MHAP is biased. Setting corMaxEvidenceErate=0.15 is sufficient to correct for the bias in
our testing.

In general, with high coverage repetitive genomes (such as plants) it can be beneficial to set
the above parameter anyway, as it will eliminate repetitive matches, speed up the assembly, and
sometime improve unitigs.

How can I send data to you?

FTP to ftp://ftp.cbcb.umd.edu/incoming/sergek. This is a write-only location that only the Canu
developers can see.

Here is a quick walk-through using a command-line ftp client (should be available on most Linux
and OSX installations). Say we want to transfer a file named reads.fastq. First, run ftp
ftp.cbcb.umd.edu, specify anonymous as the user name and hit return for password
(blank). Then cd incoming/sergek, put reads.fastq, and quit.

That’s it, you won’t be able to see the file but we can download it.

Canu Tutorial

Canu assembles reads from PacBio RS II or Oxford Nanopore MinION instruments into
uniquely-assemblable contigs, unitigs. Canu owes lots of it design and code to
celera-assembler.

Canu can be run using hardware of nearly any shape or size, anywhere from laptops to computational
grids with thousands of nodes. Obviously, larger assemblies will take a long time to compute on
laptops, and smaller assemblies can’t take advantage of hundreds of nodes, so what is being
assembled plays some part in determining what hardware can be effectively used.

Most algorithms in canu have been multi-threaded (to use all the cores on a single node),
parallelized (to use all the nodes in a grid), or both (all the cores on all the nodes).

Canu, the command

The canu command is the ‘executive’ program that runs all modules of the assembler. It oversees
each of the three top-level tasks (correction, trimming, unitig construction), each of which
consists of many steps. Canu ensures that input files for each step exist, that each step
successfully finished, and that the output for each step exists. It does minor bits of processing,
such as reformatting files, but generally just executes other programs.

canu [-correct | -trim | -assemble | -trim-assemble] \
 [-s <assembly-specifications-file>] \
 -p <assembly-prefix> \
 -d <assembly-directory> \
 genomeSize=<number>[g|m|k] \
 [other-options] \
 [-pacbio-raw | -pacbio-corrected | -nanopore-raw | -nanopore-corrected] *fastq

The -p option, to set the file name prefix of intermediate and output files, is mandatory. If -d is
not supplied, canu will run in the current directory, otherwise, Canu will create the
assembly-directory and run in that directory. It is _not_ possible to run two different
assemblies in the same directory.

The -s option will import a list of parameters from the supplied specification (‘spec’) file. These
parameters will be applied before any from the command line are used, providing a method for
setting commonly used parameters, but overriding them for specific assemblies.

By default, all three top-level tasks are performed. It is possible to run exactly one task by
using the -correct, -trim or -assemble options. These options can be useful if you want to correct
reads once and try many different assemblies. We do exactly that in the Canu Quick Start.
Additionally, suppling pre-corrected reads with -pacbio-corrected or -nanopore-corrected
will run only the trimming (-trim) and assembling (-assemble) stages.

Parameters are key=value pairs that configure the assembler. They set run time parameters (e.g.,
memory, threads, grid), algorithmic parameters (e.g., error rates, trimming aggressiveness), and
enable or disable entire processing steps (e.g., don’t correct errors, don’t search for subreads).
They are described later. One parameter is required: the genomeSize (in bases, with common
SI prefixes allowed, for example, 4.7m or 2.8g; see genomeSize). Parameters are listed in
the Canu Parameter Reference, but the common ones are described in this document.

Reads are supplied to canu by options that options that describe how the reads were generated, and
what level of quality they are, for example, -pacbio-raw indicates the reads were generated on a
PacBio RS II instrument, and have had no processing done to them. Each file of reads supplied this
way becomes a ‘library’ of reads. The reads should have been (physically) generated all at the same
time using the same steps, but perhaps sequenced in multiple batches. In canu, each library has a
set of options setting various algorithmic parameters, for example, how aggressively to trim. To
explicitly set library parameters, a text ‘gkp’ file describing the library and the input files must
be created. Don’t worry too much about this yet, it’s an advanced feature, fully described in
Section gkp-files.

The read-files contain sequence data in either FASTA or FASTQ format (or both! A quirk of the
implementation allows files that contain both FASTA and FASTQ format reads). The files can be
uncompressed, gzip, bzip2 or xz compressed. We’ve found that “gzip -1” provides good compression
that is fast to both compress and decompress. For ‘archival’ purposes, we use “xz -9”.

Canu, the pipeline

The canu pipeline, that is, what it actually computes, comprises of computing overlaps and
processing the overlaps to some result. Each of the three tasks (read correction, read trimming and
unitig construction) follow the same pattern:

	Load reads into the read database, gkpStore.

	Compute k-mer counts in preparation for the overlap computation.

	Compute overlaps.

	Load overlaps into the overlap database, ovlStore.

	Do something interesting with the reads and overlaps.

	The read correction task will replace the original noisy read sequences with consensus sequences
computed from overlapping reads.

	The read trimming task will use overlapping reads to decide what regions of each read are
high-quality sequence, and what regions should be trimmed. After trimming, the single largest
high-quality chunk of sequence is retained.

	The unitig construction task finds sets of overlaps that are consistent, and uses those to place
reads into a multialignment layout. The layout is then used to generate a consensus sequence
for the unitig.

Module Tags

Because each of the three tasks share common algorithms (all compute overlaps, two compute
consensus sequences, etc), parameters are differentiated by a short prefix ‘tag’ string. This lets
canu have one generic parameter that can be set to different values for each stage in each task.
For example, “corOvlMemory” will set memory usage for overlaps being generated for read correction;
“obtOvlMemory” for overlaps generated for Overlap Based Trimming; “utgOvlMemory” for overlaps
generated for unitig construction.

The tags are:

	Tag

	Usage

	master

	the canu script itself, and any components that it runs directly

	
	

	cns

	unitig consensus generation

	cor

	read correction generation

	
	

	red

	read error detection

	oea

	overlap error adjustment

	
	

	ovl

	the standard overlapper

	corovl

	the standard overlapper, as used in the correction phase

	obtovl

	the standard overlapper, as used in the trimming phase

	utgovl

	the standard overlapper, as used in the assembly phase

	
	

	mhap

	the mhap overlapper

	cormhap

	the mhap overlapper, as used in the correction phase

	obtmhap

	the mhap overlapper, as used in the trimming phase

	utgmhap

	the mhap overlapper, as used in the assembly phase

	
	

	mmap

	the minimap [https://github.com/lh3/minimap] overlapper

	cormmap

	the minimap overlapper, as used in the correction phase

	obtmmap

	the minimap overlapper, as used in the trimming phase

	utgmmap

	the minimap overlapper, as used in the assembly phase

	
	

	ovb

	the bucketizing phase of overlap store building

	ovs

	the sort phase of overlap store building

We’ll get to the details eventually.

Execution Configuration

There are two modes that canu runs in: locally, using just one machine, or grid-enabled, using
multiple hosts managed by a grid engine. LSF, PBS/Torque, PBSPro, Sun Grid Engine (and
derivations), and Slurm are supported, though LSF has had limited testing. Section
Grid Engine Configuration has a few hints on how to set up a new grid engine.

By default, if a grid is detected the canu pipeline will immediately submit itself to the grid and
run entirely under grid control. If no grid is detected, or if option useGrid=false is set,
canu will run on the local machine.

In both cases, Canu will auto-detect available resources and configure job sizes based on the
resources and genome size you’re assembling. Thus, most users should be able to run the command
without modifying the defaults. Some advanced options are outlined below. Each stage has the same
five configuration options, and tags are used to specialize the option to a specific stage. The
options are:

	useGrid<tag>=boolean

	Run this stage on the grid, usually in parallel.

	gridOptions<tag>=string

	Supply this string to the grid submit command.

	<tag>Memory=integer

	Use this many gigabytes of memory, per process.

	<tag>Threads

	Use this many compute threads per process.

	<tag>Concurrency

	If not on the grid, run this many jobs at the same time.

Global grid options, applied to every job submitted to the grid, can be set with ‘gridOptions’.
This can be used to add accounting information or access credentials.

A name can be associated with this compute using ‘gridOptionsJobName’. Canu will work just fine
with no name set, but if multiple canu assemblies are running at the same time, they will tend to
wait for each others jobs to finish. For example, if two assemblies are running, at some point both
will have overlap jobs running. Each assembly will be waiting for all jobs named ‘ovl_asm’ to
finish. Had the assemblies specified job names, gridOptionsJobName=apple and
gridOptionsJobName=orange, then one would be waiting for jobs named ‘ovl_asm_apple’, and the other
would be waiting for jobs named ‘ovl_asm_orange’.

Error Rates

Canu expects all error rates to be reported as fraction error, not as percent error. We’re not sure
exactly why this is so. Previously, it used a mix of fraction error and percent error (or both!),
and was a little confusing. Here’s a handy table you can print out that converts between fraction
error and percent error. Not all values are shown (it’d be quite a large table) but we have every
confidence you can figure out the missing values:

	Fraction Error

	Percent Error

	0.01

	1%

	0.02

	2%

	0.03

	3%

	.

	.

	.

	.

	0.12

	12%

	.

	.

	.

	.

Canu error rates always refer to the percent difference in an alignment of two reads, not the
percent error in a single read, and not the amount of variation in your reads. These error rates
are used in two different ways: they are used to limit what overlaps are generated, e.g., don’t
compute overlaps that have more than 5% difference; and they are used to tell algorithms what
overlaps to use, e.g., even though overlaps were computed to 5% difference, don’t trust any above 3%
difference.

There are seven error rates. Three error rates control overlap creation (corOvlErrorRate, obtOvlErrorRate and utgOvlErrorRate),
and four error rates control algorithms (corErrorRate, obtErrorRate, utgErrorRate, cnsErrorRate).

The three error rates for overlap creation apply to the ovl overlap algorithm and the
mhapReAlign option used to generate alignments from mhap or minimap
overlaps. Since mhap is used for generating correction overlaps, the corOvlErrorRate parameter is not used by default. Overlaps for trimming and assembling use the
ovl algorithm, therefore, obtOvlErrorRate and utgOvlErrorRate are used.

The four algoriothm error rates are used to select which overlaps can be used for correcting reads
(corErrorRate); which overlaps can be used for trimming reads
(obtErrorRate); which overlaps can be used for assembling reads
(utgErrorRate). The last error rate, cnsErrorRate,
tells the consensus algorithm to not trust read alignments above that value.

For convenience, two meta options set the error rates used with uncorrected reads
(rawErrorRate) or used with corrected reads. (correctedErrorRate). The default depends on the type of read being assembled.

	Parameter

	PacBio

	Nanopore

	rawErrorRate

	0.300

	0.500

	correctedErrorRate

	0.045

	0.144

In practice, only correctedErrorRate is usually changed. The Canu FAQ
has specific suggestions on when to change this.

Canu v1.4 and earlier used the errorRate parameter, which set the expected
rate of error in a single corrected read.

Minimum Lengths

Two minimum sizes are known:

	minReadLength

	Discard reads shorter than this when loading into the assembler, and when trimming reads.

	minOverlapLength

	Do not save overlaps shorter than this.

Overlap configuration

The largest compute of the assembler is also the most complicated to configure. As shown in the
‘module tags’ section, there are up to eight (!) different overlapper configurations. For
each overlapper (‘ovl’ or ‘mhap’) there is a global configuration, and three specializations
that apply to each stage in the pipeline (correction, trimming or assembly).

Like with ‘grid configuration’, overlap configuration uses a ‘tag’ prefix applied to each option. The
tags in this instance are ‘cor’, ‘obt’ and ‘utg’.

For example:

	To change the k-mer size for all instances of the ovl overlapper, ‘merSize=23’ would be used.

	To change the k-mer size for just the ovl overlapper used during correction, ‘corMerSize=16’ would be used.

	To change the mhap k-mer size for all instances, ‘mhapMerSize=18’ would be used.

	To change the mhap k-mer size just during correction, ‘corMhapMerSize=15’ would be used.

	To use minimap for overlap computation just during correction, ‘corOverlapper=minimap’ would be used. The minimap2 executable must be symlinked from the Canu binary folder (‘Linux-amd64/bin’ or ‘Darwin-amd64/bin’ depending on your system).

Ovl Overlapper Configuration

	<tag>Overlapper

	select the overlap algorithm to use, ‘ovl’ or ‘mhap’.

Ovl Overlapper Parameters

	<tag>ovlHashBlockLength

	how many bases to reads to include in the hash table; directly controls process size

	<tag>ovlRefBlockSize

	how many reads to compute overlaps for in one process; directly controls process time

	<tag>ovlRefBlockLength

	same, but use ‘bases in reads’ instead of ‘number of reads’

	<tag>ovlHashBits

	size of the hash table (SHOULD BE REMOVED AND COMPUTED, MAYBE TWO PASS)

	<tag>ovlHashLoad

	how much to fill the hash table before computing overlaps (SHOULD BE REMOVED)

	<tag>ovlMerSize

	size of kmer seed; smaller - more sensitive, but slower

The overlapper will not use frequent kmers to seed overlaps. These are computed by the ‘meryl’ program,
and can be selected in one of three ways.

Terminology. A k-mer is a contiguous sequence of k bases. The read ‘ACTTA’ has two 4-mers: ACTT
and CTTA. To account for reverse-complement sequence, a ‘canonical kmer’ is the lexicographically
smaller of the forward and reverse-complemented kmer sequence. Kmer ACTT, with reverse complement
AAGT, has a canonical kmer AAGT. Kmer CTTA, reverse-complement TAAG, has canonical kmer CTTA.

A ‘distinct’ kmer is the kmer sequence with no count associated with it. A ‘total’ kmer (for lack
of a better term) is the kmer with its count. The sequence TCGTTTTTTTCGTCG has 12 ‘total’ 4-mers
and 8 ‘distinct’ kmers.

TCGTTTTTTTCGTCG count
TCGT 2 distinct-1
 CGTT 1 distinct-2
 GTTT 1 distinct-3
 TTTT 4 distinct-4
 TTTT 4 copy of distinct-4
 TTTT 4 copy of distinct-4
 TTTT 4 copy of distinct-4
 TTTC 1 distinct-5
 TTCG 1 distinct-6
 TCGT 2 copy of distinct-1
 CGTC 1 distinct-7
 GTCG 1 distinct-8

	<tag>MerThreshold

	any kmer with count higher than N is not used

	<tag>MerDistinct

	pick a threshold so as to seed overlaps using this fraction of all distinct kmers in the input. In the example above,
fraction 0.875 of the k-mers (7/8) will be at or below threshold 2.

	<tag>MerTotal

	pick a threshold so as to seed overlaps using this fraction of all kmers in the input. In the example above,
fraction 0.667 of the k-mers (8/12) will be at or below threshold 2.

	<tag>FrequentMers

	don’t compute frequent kmers, use those listed in this file

Mhap Overlapper Parameters

	<tag>MhapBlockSize

	Chunk of reads that can fit into 1GB of memory. Combined with memory to compute the size of chunk the reads are split into.

	<tag>MhapMerSize

	Use k-mers of this size for detecting overlaps.

	<tag>ReAlign

	After computing overlaps with mhap, compute a sequence alignment for each overlap.

	<tag>MhapSensitivity

	Either ‘normal’, ‘high’, or ‘fast’.

Mhap also will down-weight frequent kmers (using tf-idf), but it’s selection of frequent is not exposed.

Minimap Overlapper Parameters

	<tag>MMapBlockSize

	Chunk of reads that can fit into 1GB of memory. Combined with memory to compute the size of chunk the reads are split into.

	<tag>MMapMerSize

	Use k-mers of this size for detecting overlaps

Minimap also will ignore high-frequency minimizers, but it’s selection of frequent is not exposed.

Outputs

As Canu runs, it outputs status messages, execution logs, and some analysis to the console. Most of
the analysis is captured in <prefix>.report as well.

LOGGING

	<prefix>.report

	Most of the analysis reported during assembly. This will report the histogram of read lengths, the histogram or k-mers in the raw and corrected reads, the summary of corrected data, summary of overlaps, and the summary of contig lengths.

You can use the k-mer corrected read histograms with tools like GenomeScope [http://qb.cshl.edu/genomescope/] to estimate heterozygosity and genome size. In particular, histograms with more than 1 peak likely indicate a heterozygous genome. See the Canu FAQ for some suggested parameters.

The corrected read report gives a summary of the fate of all input reads. The first part::

-- original original
-- raw reads raw reads
-- category w/overlaps w/o/overlaps
-- -------------------- ------------- -------------
-- Number of Reads 250609 477
-- Number of Bases 2238902045 1896925
-- Coverage 97.344 0.082
-- Median 6534 2360
-- Mean 8933 3976
-- N50 11291 5756
-- Minimum 1012 0
-- Maximum 60664 41278

reports the fraction of reads which had an overlap. In this case, the majority had at least one overlap, which is good. Next:

-- --------corrected---------
-- evidence expected
-- category reads raw corrected
-- -------------------- ------------- ------------- -------------
-- Number of Reads 229397 48006 48006
-- Number of Bases 2134291652 993586222 920001699
-- Coverage 92.795 43.199 40.000
-- Median 6842 15330 14106
-- Mean 9303 20697 19164
-- N50 11512 28066 26840
-- Minimum 1045 10184 10183
-- Maximum 60664 60664 59063
--

reports that a total of 92.8x of raw bases are candidates for correction. By default, Canu only selects the longest 40x for correction. In this case, it selects 43.2x of raw read data which it estimates will result in 40x correction. Not all raw reads survive full-length through correction:

-- ----------rescued----------
-- expected
-- category raw corrected
-- -------------------- ------------- -------------
-- Number of Reads 20030 20030
-- Number of Bases 90137165 61903752
-- Coverage 3.919 2.691
-- Median 3324 2682
-- Mean 4500 3090
-- N50 5529 3659
-- Minimum 1012 501
-- Maximum 41475 10179

The rescued reads are those which would not have contributed to the correction of the selected longest 40x subset. These could be short plasmids, mitochondria, etc. Canu includes them even though they’re too short by the 40x cutoff to avoid losing sequence during assembly. Lastly:

-- --------uncorrected--------
-- expected
-- category raw corrected
-- -------------------- ------------- -------------
-- Number of Reads 183050 183050
-- Number of Bases 1157075583 951438105
-- Coverage 50.308 41.367
-- Median 5729 5086
-- Mean 6321 5197
-- N50 7467 6490
-- Minimum 0 0
-- Maximum 50522 10183

are the reads which were deemed too short to correct. If you increase corOutCoverage, you could get up to 41x more corrected sequence. However, unless the genome is very heterozygous, this does not typically improve the assembly and increases the running time.

The assembly statistics (NG50, etc) are reported before and after consensus calling.

READS

	<prefix>.correctedReads.fasta.gz

	The reads after correction.

	<prefix>.trimmedReads.fasta.gz

	The corrected reads after overlap based trimming.

SEQUENCE

	<prefix>.contigs.fasta

	Everything which could be assembled and is the primary assembly, including both unique
and repetitive elements.

	<prefix>.unitigs.fasta

	Contigs, split at alternate paths in the graph.

	<prefix>.unassembled.fasta

	Reads and low-coverage contigs which could not be incorporated into the primary assembly.

The header line for each sequence provides some metadata on the sequence.:

>tig######## len=<integer> reads=<integer> covStat=<float> gappedBases=<yes|no> class=<contig|bubble|unassm> suggestRepeat=<yes|no> suggestCircular=<yes|no>

len
 Length of the sequence, in bp.

reads
 Number of reads used to form the contig.

covStat
 The log of the ratio of the contig being unique versus being two-copy, based on the read arrival rate. Positive values indicate more likely to be unique, while negative values indicate more likely to be repetitive. See `Footnote 24 <http://science.sciencemag.org/content/287/5461/2196.full#ref-24>`_ in `Myers et al., A Whole-Genome Assembly of Drosophila <http://science.sciencemag.org/content/287/5461/2196.full>`_.

gappedBases
 If yes, the sequence includes all gaps in the multialignment.

class
 Type of sequence. Unassembled sequences are primarily low-coverage sequences spanned by a single read.

suggestRepeat
 If yes, sequence was detected as a repeat based on graph topology or read overlaps to other sequences.

suggestCircular
 If yes, sequence is likely circular. The GFA file includes the CIGAR sequence for the overlap.

GRAPHS

Canu versions prior to v1.9 created a GFA of the contig graph. However, as noted at the time, the
GFA format cannot represent partial overlaps between contigs (for more details see the discussion of
general edges on the GFA2 [https://github.com/GFA-spec/GFA-spec/blob/master/GFA2.md] page).
Because Canu contigs are not compatible with the GFA format, <prefix>.contigs.gfa has been removed.

	<prefix>.unitigs.gfa

	Since the GFA format cannot represent partial overlaps, the contigs are split at all such overlap junctions into unitigs. The unitigs capture non-branching subsequences within the contigs and will break at any ambiguity (e.g. a haplotype switch).

	<prefix>.unitigs.bed

	The position of each unitig in a contig.

METADATA

The layout provides information on where each read ended up in the final assembly, including
contig and positions. It also includes the consensus sequence for each contig.

	<prefix>.contigs.layout, <prefix>.unitigs.layout

	(undocumented)

	<prefix>.contigs.layout.readToTig, <prefix>.unitigs.layout.readToTig

	The position of each read in a contig (unitig).

	<prefix>.contigs.layout.tigInfo, <prefix>.unitigs.layout.tigInfo

	A list of the contigs (unitigs), lengths, coverage, number of reads and other metadata.
Essentially the same information provided in the FASTA header line.

Canu Pipeline

The pipeline is described in Koren S, Walenz BP, Berlin K, Miller JR, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation [http://biorxiv.org/content/early/2016/08/24/071282]. bioRxiv. (2016).
Figure 1 of the paper shows the primary pipeline (below, top) and the supplement contains the sub-pipeline for building read and overlap databases (below, bottom).

[image: _images/canu-pipeline.svg][image: _images/canu-overlaps.svg]

Canu Parameter Reference

To get the most up-to-date options, run

canu -options

The default values below will vary based on the input data type and genome size.

Boolean options accept true/false or 1/0.

Memory sizes are assumed to be in gigabytes if no units are supplied. Values may be non-integer
with or without a unit - ‘k’ for kilobytes, ‘m’ for megabytes, ‘g’ for gigabytes or ‘t’ for
terabytes. For example, “0.25t” is equivalent to “256g” (or simply “256”).

Global Options

The catch all category.

	errorRate <float=unset> (OBSOLETE)

	This parameter was removed on January 27th, 2016, and is valid only in Canu 1.4 or earlier.
Canu currently still accepts the errorRate parameter, but its use is strongly discouraged.

The expected error in a single corrected read. The seven error rates were then set to three times
this value (except for corErrorRate).

	rawErrorRate <float=unset>

	The allowed difference in an overlap between two uncorrected reads, expressed as fraction error.
Sets corOvlErrorRate and corErrorRate. The
rawErrorRate typically does not need to be modified. It might need to be
increased if very early reads are being assembled. The default is 0.300 For PacBio reads, and
0.500 for Nanopore reads.

	correctedErrorRate <float=unset>

	The allowed difference in an overlap between two corrected reads, expressed as fraction error.
Sets obtOvlErrorRate, utgOvlErrorRate,
obtErrorRate, utgErrorRate, and cnsErrorRate.
The correctedErrorRate can be adjusted to account for the quality of
read correction, for the amount of divergence in the sample being assembled, and for the amount of
sequence being assembled. The default is 0.045 for PacBio reads, and 0.144 for Nanopore reads.

For low coverage datasets (less than 30X), we recommend increasing correctedErrorRate slightly, by 1% or so.

For high-coverage datasets (more than 60X), we recommend decreasing correctedErrorRate slightly, by 1% or so.

Raising the correctedErrorRate will increase run time. Likewise,
decreasing correctedErrorRate will decrease run time, at the risk of
missing overlaps and fracturing the assembly.

	minReadLength <integer=1000>

	Reads shorter than this are not loaded into the assembler. Reads output by correction and
trimming that are shorter than this are discarded.

Must be no smaller than minOverlapLength.

If set high enough, the gatekeeper module will claim there are errors in the input reads,
as too many of the input reads have been discarded. As long as there is sufficient coverage,
this is not a problem. See stopOnReadQuality and
stopOnLowCoverage

	minOverlapLength <integer=500>

	Overlaps shorter than this will not be discovered. Smaller values can be used to overcome lack of
read coverage, but will also lead to false overlaps and potential misassemblies. Larger values
will result in more correct assemblies, but more fragmented, assemblies.

Must be no bigger than minReadLength.

	readSamplingCoverage <integer=unset>

	After loading all reads into the sequence store, flag some reads as ‘not to be used’ until this
amount of coverage remains. Reads are flagged according to the score described in
readSamplingBias.

	readSamplingBias <float=0.0>

	Adjust the sampling bias towards shorter (negative numbers) or longer (positive numbers) reads.
Reads are assigned a score of random * length ^ bias and the lowest scoring reads are flagged as
described in readSamplingCoverage.

	genomeSize <float=unset> required

	An estimate of the size of the genome. Common suffices are allowed, for example, 3.7m or 2.8g.

The genome size estimate is used to decide how many reads to correct (via the corOutCoverage
parameter) and how sensitive the mhap overlapper should be (via the mhapSensitivity
parameter). It also impacts some logging, in particular, reports of NG50 sizes.

	fast <toggle>

	This option uses MHAP overlapping for all steps, not just correction, making assembly significantly faster. It can be used on any genome size but may produce less continuous assemblies on genomes larger than 1 Gbp. It is recommended for nanopore genomes smaller than 1 Gbp or metagenomes.

The fast option will also optionally use wtdbg [https://github.com/ruanjue/wtdbg2] for unitigging if wtdbg is manually copied to the Canu binary folder. However, this is only tested with very small genomes and is NOT recommended.

	canuIteration <internal parameter, do not use>

	Which parallel iteration is being attempted.

	canuIterationMax <integer=2>

	How many parallel iterations to try. Ideally, the parallel jobs, run under grid control, would
all finish successfully on the first try.
Sometimes, jobs fail due to other jobs exhausting resources (memory), or by the node itself
failing. In this case, canu will launch the jobs again. This parameter controls how many times
it tries.

	onSuccess <string=unset>

	Execute the command supplied when Canu successfully completes an assembly. The command will
execute in the <assembly-directory> (the -d option to canu) and will be supplied with the name of
the assembly (the -p option to canu) as its first and only parameter.

	onFailure <string=unset>

	Execute the command supplied when Canu terminates abnormally. The command will execute in the
<assembly-directory> (the -d option to canu) and will be supplied with the name of the assembly
(the -p option to canu) as its first and only parameter.

There are two exceptions when the command is not executed: if a ‘spec’ file cannot be read, or if
canu tries to access an invalid parameter. The former will be reported as a command line error,
and canu will never start. The latter should never occur except when developers are developing
the software.

Process Control

	showNext <boolean=false>

	Report the first major command that would be run, but don’t run it. Processing to get to that
command, for example, checking the output of the previous command or preparing inputs for the next
command, is still performed.

	stopOnReadQuality <string=false>

	If set, Canu will stop with the following error if there are significantly fewer reads or bases
loaded into the read store than what is in the input data.

Gatekeeper detected potential problems in your input reads.

Please review the logging in files:
 /assembly/godzilla/asm.gkpStore.BUILDING.err
 /assembly/godzilla/asm.gkpStore.BUILDING/errorLog

If you wish to proceed, rename the store with the following command and restart canu.

 mv /assembly/godzilla/asm.gkpStore.BUILDING \
 /assembly/godzilla/asm.gkpStore.ACCEPTED

Option stopOnReadQuality=false skips these checks.

The missing reads could be too short (decrease minReadLength to include
them), or have invalid bases or quality values. A summary of the files loaded and errors detected
is in the asm.gkpStore.BUILDING.err file, with full gory details in the
asm.gkpStore.BUILDING/errorLog.

To proceed, set stopOnReadQuality=false or rename the directory as shown.

Note that U bases are silently translated to T bases, to allow assembly of RNA sequences.

	stopOnLowCoverage <integer=10>

	Stop the assembly if read coverage is too low to be useful. Coverage is
checked whene when input sequences are
initially loaded into the sequence store, when corrected reads are generated,
and when read ends are trimmed off.

	stopAfter <string=undefined>

	If set, Canu will stop processing after a specific stage in the pipeline finishes. Valid values are:

	stopAfter=

	Canu will stop after ….

	sequenceStore

	reads are loaded into the assembler read database.

	meryl-configure

	kmer counting jobs are configured.

	meryl-count

	kmers are counted, but not processed into one database.

	meryl-merge

	kmers are merged into one database.

	meryl-process

	frequent kmers are generated.

	meryl-subtract

	haplotype specific kmers are generated.

	meryl

	all kmer work is complete.

	haplotype-configure

	haplotype read separation jobs are configured.

	haplotype

	haplotype-specific reads are generated.

	overlapConfigure

	overlap jobs are configured.

	overlap

	overlaps are generated, before they are loaded into the database.

	overlapStoreConfigure

	the jobs for creating the overlap database are configured.

	overlapStore

	overlaps are loaded into the overlap database.

	correction

	corrected reads are generated.

	trimming

	trimmed reads are generated.

	unitig

	unitigs and contigs are created.

	consensusConfigure

	consensus jobs are configured.

	consensus

	consensus sequences are loaded into the databases.

readCorrection and readTrimming are deprecated synonyms for correction and trimming, respectively.

General Options

	shell <string=”/bin/sh”>

	A path to a Bourne shell, to be used for executing scripts. By default, ‘/bin/sh’, which is typically
the same as ‘bash’. C shells (csh, tcsh) are not supported.

	java <string=”java”>

	A path to a Java application launcher of at least version 1.8.

	minimap <string=”minimap2”>

	A path to the minimap2 versatile pairwise aligner.

	gnuplot <string=”gnuplot”>

	A path to the gnuplot graphing utility. Plotting is disabled if this is unset
(gnuplot= or gnuplot=undef), or if gnuplot fails to execute, or if gnuplot
cannot generate plots. The latter two conditions generate warnings in the
diagnostic output of Canu.

	gnuplotImageFormat <string=”png”>

	The type of image to generate in gnuplot. By default, canu will use png,
svg or gif, in that order.

	preExec <string=undef>

	A single command that will be run before Canu starts in a grid-enabled configuration.
Can be used to set up the environment, e.g., with ‘module’.

File Staging

The correction stage of Canu requires random access to all the reads. Performance is greatly
improved if the gkpStore database of reads is copied locally to each node that computes corrected
read consensus sequences. This ‘staging’ is enabled by supplying a path name to fast local storage
with the stageDirectory option, and, optionally, requesting access to that resource from the grid
with the gridEngineStageOption option.

	stageDirectory <string=undefined>

	A path to a directory local to each compute node. The directory should use an environment
variable specific to the grid engine to ensure that it is unique to each task.

For example, in Sun Grid Engine, /scratch/JOB_ID-SGE_TASK_ID will use both the numeric
job ID and the numeric task ID. In SLURM, /scratch/$SLRUM_JOBID accomplishes the same.

If specified on the command line, be sure to escape the dollar sign, otherwise the shell will try
to expand it before Canu sees the option: stageDirectory=/scratch/JOB_ID-SGE_TASK_ID.

If specified in a specFile, do not escape the dollar signs.

	gridEngineStageOption <string=undefined>

	This string is passed to the job submission command, and is expected to request
local disk space on each node. It is highly grid specific. The string DISK_SPACE
will be replaced with the amount of disk space needed, in gigabytes.

On SLURM, an example is –gres=lscratch:DISK_SPACE

Cleanup Options

	saveOverlaps <boolean=false>

	If ‘true’, retain all overlap stores. If ‘false’, delete the correction
and trimming overlap stores when they are no longer useful. Overlaps used
for contig construction are never deleted.

	purgeOverlaps <string=normal>

	Controls when to remove intermediate overlap results.

‘never’ removes no intermediate overlap results. This is only useful if
you have a desire to exhaust your disk space.

‘false’ is the same as ‘never’.

‘normal’ removes intermediate overlap results after they are loaded into an
overlap store.

‘true’ is the same as ‘normal’.

‘aggressive’ removes intermediate overlap results as soon as possible. In
the event of a corrupt or lost file, this can result in a fair amount of
suffering to recompute the data. In particular, overlapper output is removed
as soon as it is loaded into buckets, and buckets are removed once they are
rewritten as sorted overlaps.

‘dangerous’ removes intermediate results as soon as possible, in some
cases, before they are even fully processed. In addition to corrupt files,
jobs killed by out of memory, power outages, stray cosmic rays, et cetera,
will result in a fair amount of suffering to recompute the lost data. This
mode can help when creating ginormous overlap stores, by removing the
bucketized data immediately after it is loaded into the sorting jobs, thus
making space for the output of the sorting jobs.

Use ‘normal’ for non-large assemblies, and when disk space is plentiful.
Use ‘aggressive’ on large assemblies when disk space is tight. Never use
‘dangerous’, unless you know how to recover from an error and you fully
trust your compute environment.

For Mhap and Minimap2, the raw ovelraps (in Mhap and PAF format) are
deleted immediately after being converted to Canu ovb format, except when
purgeOverlaps=never.

	saveReadCorrections <boolean=false>.

	If set, do not remove raw corrected read output from correction/2-correction. Normally, this
output is removed once the corrected reads are generated.

	saveIntermediates <boolean=false>

	If set, do not remove intermediate outputs. Normally, intermediate files are removed
once they are no longer needed.

NOT IMPLEMENTED.

	saveMerCounts <boolean=false>

	If set, do not remove meryl binary databases.

	saveReads <boolean=false>

	If set, save the corrected reads (in asm.correctedReads.fasta.gz) and trimmed reads (in asm.trimmedReads.fasta.gz).
Both read sets are saved in the asm.gkpStore, and can be retrieved later.

Executive Configuration

The Canu ‘executive’ is responsible for controlling what tasks run and when they run. It doesn’t
directly do any significant computations, rather it just examines the files that exist and decides
which component to run next. For example, if overlaps exist but contigs do not, it would create
contigs next.

When under grid control, some tasks can be run in the same job as the executive, if there is emough
memory and threads reserved for the executive. The benefit of this is slight; on a heavily loaded
grid, it would reduce the number of job scheduling iterations Canu needs to run.

executiveMemory <integer=4>

The amount of memory, in gigabytes, to reserve when running the Canu exectuve (and any jobs it
runs directly). Increasing this past 4 GB can allow some tasks (such as creating an overlap store
or creating contigs) to run directly, without needing a separate grid job.

executiveThreads <integer=1>

The number of threads to reserve for the Canu executive.

Overlapper Configuration

Overlaps are generated for three purposes: read correction, read trimming and unitig construction.
The algorithm and parameters used can be set independently for each set of overlaps.

Two overlap algorithms are in use. One, mhap, is typically applied to raw uncorrected reads and
returns alignment-free overlaps with imprecise extents. The other, the original overlapper
algorithm ‘ovl’, returns alignments but is much more expensive.

There are three sets of parameters, one for the ‘mhap’ algorithm, one for the ‘ovl’ algorithm, and
one for the ‘minimap’ algorithm. Parameters used for a specific type of overlap are set by a prefix
on the option: ‘cor’ for read correction, ‘obt’ for read trimming (‘overlap based trimming’) or
‘utg’ for unitig construction. For example, ‘corOverlapper=ovl’ would set the overlapper used for
read correction to the ‘ovl’ algorithm.

	{prefix}Overlapper <string=see-below>

	Specify which overlap algorithm, ‘mhap’ or ‘ovl’ or ‘minimap’. The default is to use ‘mhap’ for
‘cor’ and ‘ovl’ for both ‘obt’ and ‘utg’.

Overlapper Configuration, ovl Algorithm

	{prefix}OvlErrorRate <float=unset>

	Overlaps above this error rate are not computed.
* corOvlErrorRate applies to overlaps generated for correcting reads;
* obtOvlErrorRate applied to overlaps generated for trimming reads;
* utgOvlErrorRate applies to overlaps generated for assembling reads.
These limits apply to the ‘ovl’ overlap algorithm and when alignments are computed for mhap
overlaps with mhapReAlign.

	{prefix}OvlFrequentMers <string=undefined>

	Do not seed overlaps with these kmers, or, for mhap, do not seed with these kmers unless necessary (down-weight them).

For corFrequentMers (mhap), the file must contain a single line header followed by number-of-kmers data lines:

0 number-of-kmers
forward-kmer word-frequency kmer-count total-number-of-kmers
reverse-kmer word-frequency kmer-count total-number-of-kmers

Where kmer-count is the number of times this kmer sequence occurs in the reads, ‘total-number-of-kmers’
is the number of kmers in the reads (including duplicates; rougly the number of bases in the reads),
and ‘word-frequency’ is ‘kmer-count’ / ‘total-number-of-kmers’.

For example:

0 4
AAAATAATAGACTTATCGAGTC 0.0000382200 52 1360545
GACTCGATAAGTCTATTATTTT 0.0000382200 52 1360545
AAATAATAGACTTATCGAGTCA 0.0000382200 52 1360545
TGACTCGATAAGTCTATTATTT 0.0000382200 52 1360545

This file must be gzip compressed.

For obtFrequentMers and ovlFrequentMers, the file must contain a list of the canonical kmers and
their count on a single line. The count value is ignored, but needs to be present. This file
should not be compressed.

For example:

AAAATAATAGACTTATCGAGTC 52
AAATAATAGACTTATCGAGTCA 52

	{prefix}OvlHashBits <integer=unset>

	Width of the kmer hash. Width 22=1gb, 23=2gb, 24=4gb, 25=8gb. Plus 10b per ovlHashBlockLength.

	{prefix}OvlHashBlockLength <integer=unset>

	Amount of sequence (bp to load into the overlap hash table.

	{prefix}OvlHashLoad <integer=unset>

	Maximum hash table load. If set too high, table lookups are inefficient; if too low, search
overhead dominates run time.

	{prefix}OvlMerDistinct <integer=unset>

	K-mer frequency threshold; the least frequent fraction of distinct mers can seed overlaps.

	{prefix}OvlMerSize <integer=unset>

	K-mer size for seeds in overlaps.

	{prefix}OvlMerThreshold <integer=unset>

	K-mer frequency threshold; mers more frequent than this count are not used to seed overlaps.

	{prefix}OvlMerTotal <integer=unset>

	K-mer frequency threshold; the least frequent fraction of all mers can seed overlaps.

	{prefix}OvlRefBlockLength <integer=unset>

	Amount of sequence (bp to search against the hash table per batch.

	{prefix}OvlRefBlockSize <integer=unset>

	Number of reads to search against the hash table per batch.

Overlapper Configuration, mhap Algorithm

	{prefix}MhapBlockSize <integer=unset>

	For the MHAP overlapper, the number of reads to load per GB of memory (mhapMemory).
When mhapSensitivity=high, this value is automatically divided by two.

	{prefix}MhapMerSize <integer=unset>

	K-mer size for seeds in mhap.

	{prefix}ReAlign <boolean=false>

	Compute actual alignments from mhap overlaps.
uses either obtErrorRate or ovlErrorRate, depending on which overlaps are computed)

	{prefix}MhapSensitivity <string=”normal”>

	Coarse sensitivity level: ‘low’, ‘normal’ or ‘high’. Based on read coverage (which is impacted by
genomeSize), ‘low’ sensitivity is used if coverage is more than 60; ‘normal’ is used if coverage
is between 60 and 30, and ‘high’ is used for coverages less than 30.

Overlapper Configuration, mmap Algorithm

	{prefix}MMapBlockSize <integer=unset>

	Number of reads per 1GB block. Memory * size is loaded into memory per job.

	{prefix}MMapMerSize <integer=unset>

	K-mer size for seeds in minimap.

Overlap Store

The overlap algorithms return overlaps in an arbitrary order, however, all other algorithms (or
nearly all) require all overlaps for a single read to be readily available. Thus, the overlap store
collects and sorts the overlapper outputs into a store of overlaps, sorted by the first read in the
overlap. Each overlap is listed twice in the store, once in an “A vs B” format, and once in a “B vs
A” format (that is, swapping which read is ‘first’ in the overlap description).

Two construction algorithms are supported. A ‘sequential’ method uses a single data stream, and is
faster for small and moderate size assemblies. A ‘parallel’ method uses multiple compute nodes and
can be faster (depending on your network disk bandwidth) for moderate and large assemblies. Be
advised that the parallel method is less efficient than the sequential method, and can easily thrash
consumer-level NAS devices resulting in exceptionally poor performance.

The sequential method load all overlapper outputs (.ovb files in 1-overlapper) into memory,
duplicating each overlap. It then sortes overlaps, and creates the final overlap store.

The parallel method uses two parallel tasks: bucketizing (‘ovb’ tasks) and sorting (‘ovs’ tasks).
Bucketizing reads the outputs of the overlap tasks (ovb files in 1-overlapper), duplicates each
overlap, and writes these to intermediate files. Sorting tasks load these intermediate file into
memory, sorts the overlaps, then writes the sorted overlaps back to disk. There will be one
‘bucketizer’ (‘ovb’ tasks) task per overlap task, and tens to hundreds of ‘sorter’ (‘ovs’ tasks). A
final ‘indexing’ step is done in the Canu executive, which ties all the various files togather into
the final overlap store.

Increasing ovsMemory will allow more overlaps to fit into memory at once. This will allow larger
assemblies to use the sequential method, or reduce the number of ‘ovs’ tasks for the parallel
method.

Increasing the allowed memory for the Canu executive can allow the overlap store to be constructed as
part of the executive job – a separate grid job for constructing the store is not needed.

	ovsMemory <float>

	How much memory, in gigabytes, to use for constructing overlap stores. Must be at least 256m or 0.25g.

Meryl

The ‘meryl’ algorithm counts the occurrences of kmers in the input reads. It outputs a FASTA format
list of frequent kmers, and (optionally) a binary database of the counts for each kmer in the input.

Meryl can run in (almost) any memory size, by splitting the computation into smaller (or larger) chunks.

	merylMemory <integer=unset>

	Amount of memory, in gigabytes, to use for counting kmers.

	merylThreads <integer=unset>

	Number of compute threads to use for kmer counting.

Overlap Based Trimming

	obtErrorRate <float=unset>

	Stringency of overlaps to use for trimming reads.

	trimReadsOverlap <integer=1>

	Minimum overlap between evidence to make contiguous trim.

	trimReadsCoverage <integer=1>

	Minimum depth of evidence to retain bases.

Trio binning Configuration

	hapUnknownFraction <float=0.05>

	Fraction of unclassified bases to ignore for haplotype assemblies. If there are more than this fraction of unclassified bases, they are included in both haplotype assemblies.

Grid Engine Support

Canu directly supports most common grid scheduling systems. Under normal use, Canu will query the
system for grid support, configure itself for the machines available in the grid, then submit itself
to the grid for execution. The Canu pipeline is a series of about a dozen steps that alternate
between embarrassingly parallel computations (e.g., overlap computation) and sequential bookkeeping
steps (e.g., checking if all overlap jobs finished). This is entirely managed by Canu.

Canu has first class support for the various schedulers derived from Sun Grid Engine (Univa, Son of
Grid Engine) and the Simple Linux Utility for Resource Management (SLURM), meaning that the
developers have direct access to these systems. Platform Computing’s Load Sharing Facility (LSF) and
the various schedulers derived from the Portable Batch System (PBS, Torque and PBSPro) are supported
as well, but without developer access bugs do creep in. As of Canu v1.5, support seems stable and
working.

	useGrid <boolean=true>

	Master control. If ‘false’, no algorithms will run under grid control. Does not change the value
of the other useGrid options.

If ‘remote’, jobs are configured for grid execution, but not submitted. A message, with commands
to launch the job, is reported and canu halts execution.

Note that the host used to run canu for ‘remote’ execution must know about the grid, that is, it
must be able to submit jobs to the grid.

It is also possible to enable/disable grid support for individual algorithms with options such as
useGridBAT, useGridCNS, et cetera. This has been useful in the (far) past to prevent certain
algorithms, notably overlap error adjustment, from running too many jobs concurrently and thrashing
disk. Recent storage systems seem to be able to handle the load better – computers have gotten
faster quicker than genomes have gotten larger.

There are many options for configuring a new grid (‘gridEngine*’) and for configuring how canu
configures its computes to run under grid control (‘gridOptions*’). The grid engine to use is
specified with the ‘gridEngine’ option.

	gridEngine <string>

	Which grid engine to use. Auto-detected. Possible choices are ‘sge’, ‘pbs’, ‘pbspro’, ‘lsf’ or
‘slurm’.

Grid Engine Configuration

There are many options to configure support for a new grid engine, and we don’t describe them fully.
If you feel the need to add support for a new engine, please contact us. That said, file
src/pipeline/canu/Defaults.pm lists a whole slew of parameters that are used to build up grid
commands, they all start with gridEngine. For each grid, these parameters are defined in the
various src/pipeline/Grid_*.pm modules. The parameters are used in
src/pipeline/canu/Execution.pm.

In Canu 1.8 and earlier, gridEngineMemoryOption and gridEngineThreadsOption are used to tell
Canu how to request resources from the grid. Starting with snapshot v1.8 +90 changes (roughly
January 11th), those options were merged into gridEngineResourceOption. These options specify
the grid options needed to request memory and threads for each job. For example, the default
gridEngineResourceOption for PBS/Torque is “-l nodes=1:ppn=THREADS:mem=MEMORY”, and for Slurm it
is “–cpus-per-task=THREADS –mem-per-cpu=MEMORY”. Canu will replace “THREADS” and “MEMORY” with
the specific values needed for each job.

Grid Options

To run on the grid, each stage needs to be configured - to tell the grid how many cores it will use and how much memory it needs.
Some support for this is automagic (for example, overlapInCore and mhap know how to do this), others need to be manually configured.
Yes, it’s a problem, and yes, we want to fix it.

The gridOptions* parameters supply grid-specific options to the grid submission command.

	gridOptions <string=unset>

	Grid submission command options applied to all grid jobs

	gridOptionsJobName <string=unset>

	Grid submission command jobs name suffix

	gridOptionsBAT <string=unset>

	Grid submission command options applied to unitig construction with the bogart algorithm

	gridOptionsGFA <string=unset>

	Grid submission command options applied to gfa alignment and processing

	gridOptionsCNS <string=unset>

	Grid submission command options applied to unitig consensus jobs

	gridOptionsCOR <string=unset>

	Grid submission command options applied to read correction jobs

	gridOptionsExecutive <string=unset>

	Grid submission command options applied to master script jobs

	gridOptionsOEA <string=unset>

	Grid submission command options applied to overlap error adjustment jobs

	gridOptionsRED <string=unset>

	Grid submission command options applied to read error detection jobs

	gridOptionsOVB <string=unset>

	Grid submission command options applied to overlap store bucketizing jobs

	gridOptionsOVS <string=unset>

	Grid submission command options applied to overlap store sorting jobs

	gridOptionsCORMHAP <string=unset>

	Grid submission command options applied to mhap overlaps for correction jobs

	gridOptionsCOROVL <string=unset>

	Grid submission command options applied to overlaps for correction jobs

	gridOptionsOBTMHAP <string=unset>

	Grid submission command options applied to mhap overlaps for trimming jobs

	gridOptionsOBTOVL <string=unset>

	Grid submission command options applied to overlaps for trimming jobs

	gridOptionsUTGMHAP <string=unset>

	Grid submission command options applied to mhap overlaps for unitig construction jobs

	gridOptionsUTGOVL <string=unset>

	Grid submission command options applied to overlaps for unitig construction jobs

Algorithm Selection

Several algorithmic components of canu can be disabled, based on the type of the reads being
assembled, the type of processing desired, or the amount of compute resources available. Overlap

	enableOEA <boolean=true>

	Do overlap error adjustment - comprises two steps: read error detection (RED and overlap error adjustment (OEA

Algorithm Execution Method

Canu has a fairly sophisticated (or complicated, depending on if it is working or not) method for
dividing large computes, such as read overlapping and consensus, into many smaller pieces and then
running those pieces on a grid or in parallel on the local machine. The size of each piece is
generally determined by the amount of memory the task is allowed to use, and this memory size –
actually a range of memory sizes – is set based on the genomeSize parameter, but can be set
explicitly by the user. The same holds for the number of processors each task can use.
For example, a genomeSize=5m would result in overlaps using between 4gb and
8gb of memory, and between 1 and 8 processors.

Given these requirements, Canu will pick a specific memory size and number of processors
so that the maximum number of jobs will run at the same time. In the overlapper example,
if we are running on a machine with 32gb memory and 8 processors, it is not possible to run
8 concurrent jobs that each require 8gb memory, but it is possible to run 4 concurrent jobs
each using 6gb memory and 2 processors.

To completely specify how Canu runs algorithms, one needs to specify a maximum memory size, a
maximum number of processors, and how many pieces to run at one time. Users can set these manually
through the {prefix}Memory, {prefix}Threads and {prefix}Concurrency options. If they are not
set, defaults are chosen based on genomeSize.

	{prefix}Concurrency <integer=unset>

	Set the number of tasks that can run at the same time, when running without grid support.

	{prefix}Threads <integer=unset>

	Set the number of compute threads used per task.

	{prefix}Memory <integer=unset>

	Set the amount of memory, in gigabytes, to use for each job in a task.

Available prefixes are:

	Prefix

	Algorithm

	
cor

obt

utg

	mhap

	
Overlap generation using the

‘mhap’ algorithm for

‘cor’=correction,, ‘obt’=trimming

or ‘utg’=assembly.

	
cor

obt

utg

	mmap

	
Overlap generation using the

‘minimap’ algorithm for

‘cor’=correction,, ‘obt’=trimming

or ‘utg’=assembly.

	
cor

obt

utg

	ovl

	
Overlap generation using the

‘overlapInCore’ algorithm for

‘cor’=correction,, ‘obt’=trimming

or ‘utg’=assembly.

	
	ovb

	Parallel overlap store bucketizing

	
	ovs

	Parallel overlap store bucket sorting

	
	cor

	Read correction

	
	red

	Error detection in reads

	
	oea

	Error adjustment in overlaps

	
	bat

	Unitig/contig construction

	
	cns

	Unitig/contig consensus

For example, ‘mhapMemory` would set the memory limit for computing overlaps with the mhap algorithm;
‘cormhapMemory’ would set the memory limit only when mhap is used for generating overlaps used for
correction.

The ‘minMemory’, ‘maxMemory’, ‘minThreads’ and ‘maxThreads’ options will apply to all jobs, and
can be used to artificially limit canu to a portion of the current machine. In the overlapper
example above, setting maxThreads=4 would result in two concurrent jobs instead of four.

Overlap Error Adjustment

red = Read Error Detection
oea = Overlap Error Adjustment

	oeaBatchLength <unset>

	Number of bases per overlap error correction batch

	oeaBatchSize <unset>

	Number of reads per overlap error correction batch

	redBatchLength <unset>

	Number of bases per fragment error detection batch

	redBatchSize <unset>

	Number of reads per fragment error detection batch

Unitigger

	unitigger <string=”bogart”>

	Which unitig construction algorithm to use. Only “bogart” is supported.

	utgErrorRate <float=unset>

	Stringency of overlaps used for constructing contigs. The bogart algorithm uses the distribution of overlap error rates to filter high error overlaps; bogart will never see overlaps with error higher than this parameter.

	batOptions <unset>

	Advanced options to bogart

Consensus Partitioning

STILL DONE BY UNITIGGER, NEED TO MOVE OUTSIDE

	cnsConsensus

	Which algorithm to use for computing consensus sequences. Only ‘utgcns’ is supported.

	cnsPartitions

	Compute conseus by splitting the tigs into N partitions.

	cnsPartitionMin

	Don’t make a partition with fewer than N reads

	cnsMaxCoverage

	Limit unitig consensus to at most this coverage.

	cnsErrorRate

	Inform the consensus generation algorithm of the amount of difference it should expect in a
read-to-read alignment. Typically set to utgOvlErrorRate. If set too
high, reads could be placed in an incorrect location, leading to errors in the consensus sequence.
If set too low, reads could be omitted from the consensus graph (or multialignment, depending on
algorithm), resulting in truncated consensus sequences.

Read Correction

The first step in Canu is to find high-error overlaps and generate corrected sequences for
subsequent assembly. This is currently the fastest step in Canu. By default, only the longest 40X of
data (based on the specified genome size) is used for correction. Typically, some reads are trimmed
during correction due to being chimeric or having erroneous sequence, resulting in a loss of 20-25%
(30X output). You can force correction to be non-lossy by setting corMinCoverage=0, in which case
the corrected reads output will be the same length as the input data, keeping any high-error
unsupported bases. Canu will trim these in downstream steps before assembly.

If you have a dataset with uneven coverage or small plasmids, correcting the longest 40X may not
give you sufficient coverage of your genome/plasmid. In these cases, you can set
corOutCoverage=999, or any value greater than your total input coverage which will correct and
assemble all input data, at the expense of runtime.

	corErrorRate <integer=unset>

	Do not use overlaps with error rate higher than this (estimated error rate for mhap and minimap overlaps).

	corConsensus <string=”falconpipe”>

	Which algorithm to use for computing read consensus sequences. Only ‘falcon’ and ‘falconpipe’ are supported.

	corPartitions <integer=128>

	Partition read correction into N jobs

	corPartitionMin <integer=25000>

	Don’t make a read correction partition with fewer than N reads

	corMinEvidenceLength <integer=unset>

	Limit read correction to only overlaps longer than this; default: unlimited

	corMinCoverage <integer=4>

	Limit read correction to regions with at least this minimum coverage. Split reads when coverage drops below threshold.

	corMaxEvidenceErate <integer=unset>

	Limit read correction to only overlaps at or below this fraction error; default: unlimited

	corMaxEvidenceCoverageGlobal <string=”1.0x”>

	Limit reads used for correction to supporting at most this coverage; default: 1.0 * estimated coverage

	corMaxEvidenceCoverageLocal <string=”2.0x”>

	Limit reads being corrected to at most this much evidence coverage; default: 10 * estimated coverage

	corOutCoverage <integer=40>

	Only correct the longest reads up to this coverage; default 40

	corFilter <string=”expensive”>

	Method to filter short reads from correction; ‘quick’ or ‘expensive’ or ‘none’

Output Filtering

	contigFilter <minReads, integer=2> <minLength, integer=0> <singleReadSpan, float=1.0> <lowCovSpan, float=0.5> <lowCovDepth, integer=5>

	A contig that needs any of the following conditions is flagged as ‘unassembled’ and removed from
further consideration:

	fewer than minReads reads (default 2)

	shorter than minLength bases (default 0)

	a single read covers more than singleReadSpan fraction of the contig (default 1.0)

	more than lowCovSpan fraction of the contig is at coverage below lowCovDepth (defaults 0.5, 5)

This filtering is done immediately after initial contigs are formed, before potentially
incorrectly spanned repeats are detected. Initial contigs that incorrectly span a repeat can be
split into multiple contigs; none of these new contigs will be flagged as ‘unassembled’, even if
they are a single read.

Canu Command Reference

Every command, even the useless ones.

Commands marked as ‘just usage’ were automagically generated from the command line usage summary. Yes, some of them even crashed.

	bogart (just usage)

	The unitig construction algorithm. BOG stands for Best Overlap Graph; we haven’t figured out what ART stands for.

	bogus (just usage)

	A unitig construction algorithm simulator. Given reads mapped to a reference, returns the largest unitigs possible.

	canu (just usage)

	The executive in charge! Coordinates all these commands to make an assembler.

	correctOverlaps (just usage)

	Part of Overlap Error Adjustment, recomputes overlaps given a set of read corrections.

	estimate-mer-threshold (just usage)

	Decides on a k-mer threshold for overlapInCore seeds.

	fastqAnalyze (just usage)

	Analyzes a FASTQ file and reports the best guess of the QV encoding. Can also rewrite the FASTQ to be in Sanger QV format.

	fastqSample (just usage)

	Extracts random reads from a single or mated FASTQ file. Extracts based on desired coverage, desired number of reads/pairs, desired fraction of the total, or desired total length.

	fastqSimulate (just usage)

	Creates reads with unbiased errors from a FASTA sequence.

	fastqSimulate-sort (just usage)

	Given input from fastqSimulate, sorts the reads by position in the reference.

	filterCorrectionOverlaps (just usage)

	Part of Read Correction, filters overlaps that shouldn’t be used for correcting reads.

	findErrors (just usage)

	Part of Overlap Error Adjustment, generates a multialignment for each read, outputs a list of suspected errors in the read.

	gatekeeperCreate (just usage)

	Loads FASTA or FASTQ reads into the canu read database, gkpStore.

	gatekeeperDumpFASTQ (just usage)

	Outputs FASTQ reads fromt the canu read database, gkpStore.

	gatekeeperDumpMetaData (just usage)

	Outputs read and library metadata fromt the canu read database, gkpStore.

	gatekeeperPartition (just usage)

	Part of Consensus, rearranges the canu read database, gkpStore, to localize read to unitigs.

	generateCorrectionLayouts (just usage)

	Part of Read Correction, generates the multialignment layout used to correct reads.

	leaff (just usage)

	Not actually part of canu, but it came along with meryl. Provides random access to FASTA, FASTQ and gkpStore. Also does some analysis tasks. Handy Swiss Army knife type of tool.

	meryl (just usage)

	Counts k-mer occurrences in FASTA, FASTQ and gkpStore. Performs mathematical and logical operations on the resulting k-mer databases.

	mhapConvert (just usage)

	Convert mhap output to overlap output.

	ovStoreBucketizer (just usage)

	Part of the parallel overlap store building pipeline, loads raw overlaps from overlapper into the store.

	ovStoreBuild (just usage)

	Sequentially builds an overlap store from raw overlaps. Simplest to run, but slow on large datasets.

	ovStoreDump (just usage)

	Dumps overlaps from the overlap store, ovlStore.

	ovStoreIndexer (just usage)

	Part of the parallel overlap store building pipeline, finalizes the store, after sorting with ovStoreSorter.

	ovStoreSorter (just usage)

	Part of the parallel overlap store building pipeline, sorts overlaps loaded into the store by ovStoreBucketizer.

	overlapConvert (just usage)

	Reads raw overlapper output, writes overlaps as ASCII. The reverse of overlapImport.

	overlapImport (just usage)

	Reads ASCII overlaps in a few different formats, writes either ‘raw overlapper output’ or creates an ovlStore.

	overlapInCore (just usage)

	The classic overlapper algorithm.

	overlapInCorePartition (just usage)

	Generate partitioning to run overlapInCore jobs in parallel.

	overlapPair (just usage)

	An experimental algorithm to recompute overlaps and output the alignments.

	prefixEditDistance-matchLimitGenerate (just usage)

	Generate source code files with data representing the minimum length of a good overlap given some number of errors.

	splitReads (just usage)

	Part of Overlap Based Trimming, splits reads based on overlaps, specifically, looking for PacBio hairpin adapter signatures.

	tgStoreCoverageStat (just usage)

	Analyzes tigs in the tigStore, computes the classic arrival rate statistic [http://wgs-assembler.sourceforge.net/wiki/index.php/Celera_Assembler_Theory].

	tgStoreDump (just usage)

	Analyzes and outputs tigs from the tigStore, in various formats (FASTQ, layouts, multialignments, etc).

	tgStoreFilter (just usage)

	Analyzes tigs in the tigStore, marks those that appear to be spurious ‘degenerate’ tigs.

	tgStoreLoad (just usage)

	Loads tigs into a tigStore.

	tgTigDisplay (just usage)

	Displays the tig contained in a binary multialignment file, as output by utgcns.

	trimReads (just usage)

	Part of Overlap Based Trimming, trims reads based on overlaps.

	utgcns (just usage)

	Generates a multialignment for a tig, based on the layout stored in tigStore. Outputs FASTQ, layouts and binary mutlialignment files.

Software Background

Canu is derived from Celera Assembler [http://wgs-assembler.sourceforge.net/], which is no longer maintained.

Celera Assembler [Myers 2000 [http://doi.org/10.1126/science.287.5461.2196]] was designed to reconstruct mammalian chromosomal DNA
sequences from the short fragments of a whole genome shotgun sequencing project.
Celera Assembler was used to produce reconstructions of several large genomes, namely
those of Homo sapiens [Venter 2001 [http://doi.org/10.1126/science.1058040]], Mus musculus [Mural 2002 [http://doi.org/10.1126/science.1069193]], Rattus norvegicus
[unpublished data [https://www.genome.gov/10001855/rat-genome-sequencing/]], Canis familiaris [Kirkness 2003 [http://doi.org/10.1126/science.1086432]], Drosophila melanogaster [Adams
2000 [http://doi.org/10.1126/science.287.5461.2185]], and Anopheles gambiae [Holt 2001 [http://doi.org/10.1126/science.1076181]]. Celera Assembler was shown to be very
accurate when its reconstruction of the human genome was compared to independent
reconstructions completed later [Istrail 2004 [http://doi.org/10.1073/pnas.0307971100]]. It was used to reconstructing one of the
first large-scale metagenomic projects [Venter 2004 [http://doi.org/10.1126/science.1093857], Rusch 2007 [http://doi.org/10.1371/journal.pbio.0050077]] and a diploid human
reference [Levy 2007 [http://doi.org/10.1371/journal.pbio.0050254], Denisov 2008 [http://doi.org/10.1093/bioinformatics/btn074]]. It was adapted to 454 Pyrosequencing [Miller 2008 [http://doi.org/10.1093/bioinformatics/btn548]]
and PacBio sequencing [Koren 2012 [http://doi.org/10.1038/nbt.2280]], demonstrating finished bacterial genomes [Koren 2013 [http://doi.org/10.1186/gb-2013-14-9-r101]]
and efficient algorithms for eukaryotic assembly [Berlin 2015 [http://doi.org/10.1038/nbt.3238]].

Celera Assembler was released under the GNU General Public License, version 2 as a
supplement to [Istrail 2004 [http://doi.org/10.1073/pnas.0307971100]].

Canu [Koren and Walenz 2017 [http://doi.org/10.1101/gr.215087.116]] was branched from
Celera Assembler in 2015, and specialized for single-molecule high-noise sequences.
For the most recent license information on Canu,
see README.licences [https://github.com/marbl/canu/blob/master/README.licenses].

References

	Adams et al. (2000) The Genome Sequence of Drosophila melanogaster [http://doi.org/10.1126/science.287.5461.2185]. Science 287 2185-2195.

	Myers et al. (2000) A Whole-Genome Assembly of Drosophila [http://doi.org/10.1126/science.287.5461.2196]. Science 287 2196-2204.

	Venter et al. (2001) The Sequence of the Human Genome [http://doi.org/10.1126/science.1058040]. Science 291 1304-1351.

	Mural et al. (2002) A Comparison of Whole-Genome Shotgun-Derived Mouse Chromosome 16 and the Human Genome [http://doi.org/10.1126/science.1069193]. Science 296 1661-1671.

	Holt et al. (2002) The Genome Sequence of the Malaria Mosquito Anophelesd gambiae [http://doi.org/10.1126/science.1076181]. Science 298 129-149.

	Istrail et al. (2004) Whole Genome Shotgun Assembly and Comparison of Human Genome Assemblies [http://doi.org/10.1073/pnas.0307971100]. PNAS 101 1916-1921.

	Kirkness et al. (2003) The Dog Genome: Survey Sequencing and Comparative Analysis [http://doi.org/10.1126/science.1086432]. Science 301 1898-1903.

	Venter et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea [http://doi.org/10.1126/science.1093857]. Science 304 66-74.

	Levy et al. (2007) The Diploid Genome Sequence of an Individual Human [http://doi.org/10.1371/journal.pbio.0050254]. PLoS Biology 0050254

	Rusch et al. (2007) The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific [http://doi.org/10.1371/journal.pbio.0050077]. PLoS Biology 1821060.

	Denisov et al. (2008) Consensus Generation and Variant Detection by Celera Assembler [http://doi.org/10.1093/bioinformatics/btn074]. Bioinformatics 24(8):1035-40

	Miller et al. (2008) Aggressive Assembly of Pyrosequencing Reads with Mates [http://doi.org/10.1093/bioinformatics/btn548]. Bioinformatics 24(24):2818-2824

	Koren et al. (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads [http://doi.org/10.1038/nbt.2280]. Nature Biotechnology, July 2012.

	Koren et al. (2013) Reducing assembly complexity of microbial genomes with single-molecule sequencing [http://doi.org/10.1186/gb-2013-14-9-r101]. Genome Biology 14:R101.

	Berlin et. al. (2015) Assembling Large Genomes with Single-Molecule Sequencing and Locality Sensitive Hashing [http://doi.org/10.1038/nbt.3238]. Nature Biotechnology. (2015).

	Koren and Walenz et al. (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation [http://doi.org/10.1101/gr.215087.116]. Genome Research. (2017).

Index

bogart

usage: bogart -o outputName -O ovlStore -G gkpStore -T tigStore

 -O Mandatory path to an ovlStore.
 -G Mandatory path to a gkpStore.
 -T Mandatory path to a tigStore (can exist or not).
 -o prefix Mandatory name for the output files

 -B b Target number of fragments per tigStore (consensus) partition

Algorithm Options

 -gs Genome size in bases.

 -J Join promiscuous unitigs using unused best edges.

 -SR Shatter repeats, don't rebuild.
 -R Shatter repeats (-SR), then rebuild them
 -RL len Force reads below 'len' bases to be singletons.
 This WILL cause CGW to fail; diagnostic only.

 -threads N Use N compute threads during repeat detection.
 0 - use OpenMP default (default)
 1 - use one thread

Overlap Selection - an overlap will be considered for use in a unitig under
 the following conditions:

 When constructing the Best Overlap Graph and Promiscuous Unitigs ('g'raph):
 -eg 0.020 no more than 0.020 fraction (2.0%) error ** DEPRECATED **

 When loading overlaps, an inflated maximum (to allow reruns with different error rates):
 -eM 0.05 no more than 0.05 fraction (5.0%) error in any overlap loaded into bogart
 the maximum used will ALWAYS be at least the maximum of the four error rates

 For all, the lower limit on overlap length
 -el 500 no shorter than 40 bases

Overlap Storage

 -M gb Use at most 'gb' gigabytes of memory for storing overlaps.
 -N num Load at most 'num' overlaps per read.

 -create Only create the overlap graph, save to disk and quit.
 -save Save the overlap graph to disk, and continue.

Debugging and Logging

 -D <name> enable logging/debugging for a specific component.
 -d <name> disable logging/debugging for a specific component.
 overlapScoring
 allBestEdges
 chunkGraph
 buildUnitig
 placeUnplaced
 bubbles
 splitDiscontinuous
 intermediateUnitigs
 setParentAndHang
 stderr

No output prefix name (-o option) supplied.
No gatekeeper store (-G option) supplied.
No overlap store (-O option) supplied.
No output tigStore (-T option) supplied.

bogus

ERROR: No input matches supplied (either -nucmer or -snapper).
ERROR: No reference sequence supplied (-reference).
ERROR: No output prefix supplied (-output).

canu

-- Detected Java(TM) Runtime Environment '1.8.0_60' (from 'java').

usage: canu [-correct | -trim | -assemble] \
 [-s <assembly-specifications-file>] \
 -p <assembly-prefix> \
 -d <assembly-directory> \
 genomeSize=<number>[g|m|k] \
 errorRate=0.X \
 [other-options] \
 [-pacbio-raw | -pacbio-corrected | -nanopore-raw | -nanopore-corrected] *fastq

 By default, all three stages (correct, trim, assemble) are computed.
 To compute only a single stage, use:
 -correct - generate corrected reads
 -trim - generate trimmed reads
 -assemble - generate an assembly

 The assembly is computed in the (created) -d <assembly-directory>, with most
 files named using the -p <assembly-prefix>.

 The genome size is your best guess of the genome size of what is being assembled.
 It is used mostly to compute coverage in reads. Fractional values are allowed: '4.7m'
 is the same as '4700k' and '4700000'

 The errorRate is not used correctly (we're working on it). Don't set it
 If you want to change the defaults, use the various utg*ErrorRate options.

 A full list of options can be printed with '-options'. All options
 can be supplied in an optional spec file.

 Reads can be either FASTA or FASTQ format, uncompressed, or compressed
 with gz, bz2 or xz. Reads are specified by the technology they were
 generated with:
 -pacbio-raw <files>
 -pacbio-corrected <files>
 -nanopore-raw <files>
 -nanopore-corrected <files>

Complete documentation at http://canu.readthedocs.org/en/latest/

ERROR: Assembly name prefix not supplied with -p.
ERROR: Directory not supplied with -d.
ERROR: Required parameter 'genomeSize' is not set

correctOverlaps

ERROR: no input gatekeeper store (-G) supplied.
ERROR: no input overlap store (-O) supplied.
ERROR: no input read corrections file (-c) supplied.
ERROR: no output erates file (-o) supplied.
USAGE: correctOverlaps [-d <dna-file>] [-o <ovl_file>] [-q <quality>]
 [-x <del_file>] [-F OlapFile] [-S OlapStore]
 [-c <cgb_file>] [-e <erate_file>
 <gkpStore> <CorrectFile> <lo> <hi>

Recalculates overlaps for frags <lo> .. <hi> in
 <gkpStore> using corrections in <CorrectFile>

Options:
-e <erate-file> specifies binary file to dump corrected erates to
 for later updating of olap store by update-erates
-F specify file of sorted overlaps to use (in the format
 produced by get-olaps
-o <ovl_file> specifies name of file to which OVL messages go
-q <quality> overlaps less than this error rate are
 automatically output
-S specify the binary overlap store containing overlaps to use

createFalconSenseInputs

erateEstimate

Opening '(null)'

estimate-mer-threshold

usage: estimate-mer-threshold -m mercounts
 -m mercounts file of mercounts

fastqAnalyze

usage: fastqAnalyze [-stats] [-o output.fastq] input.fastq
 If no options are given, input.fastq is analyzed and a best guess for the
 QV encoding is output. Otherwise, the QV encoding is converted to Sanger-style
 using this guess.

 In some cases, the encoding cannot be determined. When this occurs, no guess is
 output. For conversion, you can force the input QV type with:

 -solexa input QV is solexa
 -illumina input QV is illumina
 -sanger input QV is sanger

 -o sanger-style-output.fastq

 If -stats is supplied, no QV analysis or conversion is performed, but some simple
 statistics are computed and output to stdout.

fastqSample

usage: fastqSample [opts]
 Input Specification
 -I NAME input name (prefix) of the reads
 -T T total number of mate pairs in the input (if not supplied, will be counted)
 -L L length of a single read (if not supplied, will be determined)
 -U reads are unmated, expected in *.u.fastq

 Output Specification
 -O NAME output name (prefix) of the reads (default is same as -I)
 -A automatically include coverage or number of reads in the output name
 -m L ignore reads shorter than L bases
 -max don't sample randomly, pick the longest reads

 Method 1: specify desired output coverage:
 -g G genome size
 -c C desired coverage in the output reads

 Method 2: specify desired number of output pairs
 -p N for mated reads, output 2N reads, or N pairs of reads
 for unmated reads, output N reads

 Method 3: specify a desired fraction of the input:
 -f F output F * T pairs of reads (T as above in -t option)
 0.0 < F <= 1.0

 Method 4: specify a desired total length
 -b B output reads/pairs until B bases is exceeded

Samples reads from paired Illumina reads NAME.1.fastq and NAME.2.fastq and outputs:
 NAME.Cx.1.fastq and N.Cx.2.fastq (for coverage based sampling)
 NAME.n=N.1.fastq and N.n=N.2.fastq (for coverage based sampling)

If -T is not supplied, the number of reads will be counted for you.

ERROR: no name supplied with -I.
ERROR: no method supplied with -c, -p, -f or -b

fastqSimulate-sort

usage: fastqSimulate-sort -i1 in.1.fastq [-i2 in.2.fastq] -o1 out.1.fastq [-o2 out.2.fastq]
ERROR: No in.1.fastq supplied with -i1.
ERROR: No out.1.fastq supplied with -i1.

fastqSimulate

usage: fastqSimulate -f reference.fasta -o output-prefix -l read-length
 -f ref.fasta Use sequences in ref.fasta as the genome.
 -o name Create outputs name.1.fastq and name.2.fastq (and maybe others).
 -l len Create reads of length 'len' bases.
 -n n Create 'n' reads (for -se) or 'n' pairs of reads (for -pe and -mp).
 -x read-cov Set 'np' to create reads that sample the genome to 'read-cov' read coverage.
 -X clone-cov Set 'np' to create reads that sample the genome to 'clone-cov' clone coverage.

 -em err Reads will contain fraction mismatch error 'e' (0.01 == 1% error).
 -ei err Reads will contain fraction insertion error 'e' (0.01 == 1% error).
 -ed err Reads will contain fraction deletion error 'e' (0.01 == 1% error).

 -seed s Seed randomness with 32-bit integer s.

 -allowgaps Allow pairs to span N regions in the reference. By default, pairs
 are not allowed to span a gap. Reads are never allowed to cover N's.

 -allowns Allow reads to contain N regions. Implies -allowgaps

 -nojunction For -mp, do not create chimeric junction reads. Create only fully PE or
 fully MP reads.

 -normal p Output a normal-oriented (both forward or both reverse) pair with
 probability p. Only for -pe and -mp.

 -se
 Create single-end reads.

 -cc junkSize junkStdDev false
 Create chimeric single-end reads. The chimer is formed from two uniformly
 distributed positions in the reference. Some amount of random junk is inserted
 at the junction. With probability 'false' the read is not chimeric, but still
 the junk bases inserted in the middle.

 -pe shearSize shearStdDev
 Create paired-end reads, from fragments of size 'shearSize +- shearStdDev'.

 -mp insertSize insertStdDev shearSize shearStdDev enrichment
 Create mate-pair reads. The pairs will be 'insertSize +- insertStdDev'
 apart. The circularized insert is then sheared into fragments of size
 'shearSize +- shearStdDev'. With probability 'enrichment' the fragment
 containing the junction is used to form the pair of reads. The junction
 location is uniformly distributed through this fragment.
 Reads are labeled as:
 tMP - a MP pair
 fMP - a PE pair
 aMP - a MP pair with junction in the first read
 bMP - a MP pair with junction in the second read
 cMP - a MP pair with junction in both reads (the reads overlap)

Output QV's are the Sanger spec.

ERROR: No fasta file (-f) supplied.
ERROR: No output prefix (-o) supplied.
ERROR: No type (-se or -pe or -mp) selected.

filterCorrectionOverlaps

usage: filterCorrectionOverlaps [options]

Rewrites an ovlStore, filtering overlaps that shouldn't be used for correcting reads.

 -G gkpStore input reads
 -O ovlStore input overlaps
 -S scoreFile output scores for each read, binary file, to 'scoreFile'
 per-read logging to 'scoreFile.log' (see -nolog)
 summary statistics to 'scoreFile.stats' (see -nostats)

 -c coverage retain at most this many overlaps per read

 -l length filter overlaps shorter than this length
 -e (min-)max filter overlaps outside this range of fraction error
 example: -e 0.20 filter overlaps above 20% error
 example: -e 0.05-0.20 filter overlaps below 5% error
 or above 20% error

 -nolog don't create 'scoreFile.log'
 -nostats don't create 'scoreFile.stats'
ERROR: no gatekeeper store (-G) supplied.
ERROR: no overlap store (-O) supplied.
ERROR: no output scoreFile (-S) supplied.

findErrors

gatekeeperCreate

usage: gatekeeperCreate [...] -o gkpStore
 -o gkpStore create this gkpStore

 -minlength L discard reads shorter than L

ERROR: no gkpStore (-o) supplied.
ERROR: no input files supplied.

gatekeeperDumpFASTQ

usage: gatekeeperDumpFASTQ [...] -o fastq-prefix -g gkpStore
 -G gkpStore
 -o fastq-prefix write files fastq-prefix.(libname).fastq, ...
 if fastq-prefix is '-', all sequences output to stdout
 if fastq-prefix ends in .gz, .bz2 or .xz, output is compressed

 -l libToDump output only read in library number libToDump (NOT IMPLEMENTED)
 -r id[-id] output only the single read 'id', or the specified range of ids

 -c clearFile clear range file from OBT modules
 -allreads if a clear range file, lower case mask the deleted reads
 -allbases if a clear range file, lower case mask the non-clear bases
 -onlydeleted if a clear range file, only output deleted reads (the entire read)

 -fastq output is FASTQ format (with extension .fastq, default)
 -fasta output is FASTA format (with extension .fasta)

 -nolibname don't include the library name in the output file name

ERROR: no gkpStore (-G) supplied.
ERROR: no output prefix (-o) supplied.

gatekeeperDumpMetaData

usage: gatekeeperDumpMetaData -G gkpStore [p] [...]

 -G gkpStore [p] dump reads from 'gkpStore', restricted to
 partition 'p', if supplied.

 -libs dump information about libraries
 -reads [-full] dump information about reads
 (-full also dumps some storage metadata)

 -stats dump summary statistics on reads

 -b id output starting at read/library 'id'
 -e id output stopping after read/library 'id'

 -r id output only the single read 'id'

ERROR: no gkpStore (-G) supplied.

gatekeeperPartition

usage: gatekeeperPartition -G gkpStore -P partitionMapFile
 -G gkpStore path to gatekeeper store
 -P partFile file mapping read ID to partiton
 format: 'partition readID'

ERROR: no gkpStore (-G) supplied.
ERROR: no partition input (-P) supplied.

generateCorrectionLayouts

usage: generateCorrectionLayouts -G gkpStore -O ovlStore [-T tigStore | -F] ...
 -G gkpStore mandatory path to gkpStore
 -O ovlStore mandatory path to ovlStore

 -S file global score (binary) input file

 -T corStore output layouts to tigStore corStore
 -F output falconsense-style input directly to stdout

 -p name output prefix name, for logging and summary

 -b bgnID
 -e endID

 -rl file

 -L length minimum length of evidence overlaps
 -E erate maxerror rate of evidence overlaps

 -C coverage maximum coverage of evidence reads to emit
 -M length minimum length of a corrected read

ERROR: no gkpStore input (-G) supplied.
ERROR: no ovlStore input (-O) supplied.

leaff

usage: leaff [-f fasta-file] [options]

SOURCE FILES
 -f file: use sequence in 'file' (-F is also allowed for historical reasons)
 -A file: read actions from 'file'

SOURCE FILE EXAMINATION
 -d: print the number of sequences in the fasta
 -i name: print an index, labelling the source 'name'

OUTPUT OPTIONS
 -6 <#>: insert a newline every 60 letters
 (if the next arg is a number, newlines are inserted every
 n letters, e.g., -6 80. Disable line breaks with -6 0,
 or just don't use -6!)
 -e beg end: Print only the bases from position 'beg' to position 'end'
 (space based, relative to the FORWARD sequence!) If
 beg == end, then the entire sequence is printed. It is an
 error to specify beg > end, or beg > len, or end > len.
 -ends n Print n bases from each end of the sequence. One input
 sequence generates two output sequences, with '_5' or '_3'
 appended to the ID. If 2n >= length of the sequence, the
 sequence itself is printed, no ends are extracted (they
 overlap).
 -C: complement the sequences
 -H: DON'T print the defline
 -h: Use the next word as the defline ("-H -H" will reset to the
 original defline
 -R: reverse the sequences
 -u: uppercase all bases

SEQUENCE SELECTION
 -G n s l: print n randomly generated sequences, 0 < s <= length <= l
 -L s l: print all sequences such that s <= length < l
 -N l h: print all sequences such that l <= % N composition < h
 (NOTE 0.0 <= l < h < 100.0)
 (NOTE that you cannot print sequences with 100% N
 This is a useful bug).
 -q file: print sequences from the seqid list in 'file'
 -r num: print 'num' randomly picked sequences
 -s seqid: print the single sequence 'seqid'
 -S f l: print all the sequences from ID 'f' to 'l' (inclusive)
 -W: print all sequences (do the whole file)

LONGER HELP
 -help analysis
 -help examples

meryl

usage: meryl [personality] [global options] [options]

where personality is:
 -P -- compute parameters
 -B -- build table
 -S -- scan table
 -M -- "math" operations
 -D -- dump table

-P: Given a sequence file (-s) or an upper limit on the
 number of mers in the file (-n), compute the table size
 (-t in build) to minimize the memory usage.
 -m # (size of a mer; required)
 -c # (homopolymer compression; optional)
 -p (enable positions)
 -s seq.fasta (seq.fasta is scanned to determine the number of mers)
 -n # (compute params assuming file with this many mers in it)

 Only one of -s, -n need to be specified. If both are given
 -s takes priority.

-B: Given a sequence file (-s) and lots of parameters, compute
 the mer-count tables. By default, both strands are processed.
 -f (only build for the forward strand)
 -r (only build for the reverse strand)
 -C (use canonical mers, assumes both strands)
 -L # (DON'T save mers that occur less than # times)
 -U # (DON'T save mers that occur more than # times)
 -m # (size of a mer; required)
 -c # (homopolymer compression; optional)
 -p (enable positions)
 -s seq.fasta (sequence to build the table for)
 -o tblprefix (output table prefix)
 -v (entertain the user)

 By default, the computation is done as one large sequential process.
 Multi-threaded operation is possible, at additional memory expense, as
 is segmented operation, at additional I/O expense.

 Threaded operation: Split the counting in to n almost-equally sized
 pieces. This uses an extra h MB (from -P) per thread.
 -threads n (use n threads to build)

 Segmented, sequential operation: Split the counting into pieces that
 will fit into no more than m MB of memory, or into n equal sized pieces.
 Each piece is computed sequentially, and the results are merged at the end.
 Only one of -memory and -segments is needed.
 -memory mMB (use at most m MB of memory per segment)
 -segments n (use n segments)

 Segmented, batched operation: Same as sequential, except this allows
 each segment to be manually executed in parallel.
 Only one of -memory and -segments is needed.
 -memory mMB (use at most m MB of memory per segment)
 -segments n (use n segments)
 -configbatch (create the batches)
 -countbatch n (run batch number n)
 -mergebatch (merge the batches)
 Initialize the compute with -configbatch, which needs all the build options.
 Execute all -countbatch jobs, then -mergebatch to complete.
 meryl -configbatch -B [options] -o file
 meryl -countbatch 0 -o file
 meryl -countbatch 1 -o file
 ...
 meryl -countbatch N -o file
 meryl -mergebatch N -o file
 Batched mode can run on the grid.
 -sge jobname unique job name for this execution. Meryl will submit
 jobs with name mpjobname, ncjobname, nmjobname, for
 phases prepare, count and merge.
 -sgebuild "options" any additional options to sge, e.g.,
 -sgemerge "options" "-p -153 -pe thread 2 -A merylaccount"
 N.B. - -N will be ignored
 N.B. - be sure to quote the options

-M: Given a list of tables, perform a math, logical or threshold operation.
 Unless specified, all operations take any number of databases.

 Math operations are:
 min count is the minimum count for all databases. If the mer
 does NOT exist in all databases, the mer has a zero count, and
 is NOT in the output.
 minexist count is the minimum count for all databases that contain the mer
 max count is the maximum count for all databases
 add count is sum of the counts for all databases
 sub count is the first minus the second (binary only)
 abs count is the absolute value of the first minus the second (binary only)

 Logical operations are:
 and outputs mer iff it exists in all databases
 nand outputs mer iff it exists in at least one, but not all, databases
 or outputs mer iff it exists in at least one database
 xor outputs mer iff it exists in an odd number of databases

 Threshold operations are:
 lessthan x outputs mer iff it has count < x
 lessthanorequal x outputs mer iff it has count <= x
 greaterthan x outputs mer iff it has count > x
 greaterthanorequal x outputs mer iff it has count >= x
 equal x outputs mer iff it has count == x
 Threshold operations work on exactly one database.

 -s tblprefix (use tblprefix as a database)
 -o tblprefix (create this output)
 -v (entertain the user)

 NOTE: Multiple tables are specified with multiple -s switches; e.g.:
 meryl -M add -s 1 -s 2 -s 3 -s 4 -o all
 NOTE: It is NOT possible to specify more than one operation:
 meryl -M add -s 1 -s 2 -sub -s 3
 will NOT work.

-D: Dump the table (not all of these work).

 -Dd Dump a histogram of the distance between the same mers.
 -Dt Dump mers >= a threshold. Use -n to specify the threshold.
 -Dc Count the number of mers, distinct mers and unique mers.
 -Dh Dump (to stdout) a histogram of mer counts.
 -s Read the count table from here (leave off the .mcdat or .mcidx).

mhapConvert

usage: mhapConvert [options] file.mhap[.gz]

 Converts mhap native output to ovb

 -o out.ovb output file

 -h id num base id and number of hash table reads
 (mhap output IDs 1 through 'num')
 -q id base id of query reads
 (mhap output IDs 'num+1' and higher)
ERROR: no overlap files supplied

ovStoreBucketizer

usage: ovStoreBucketizer -O asm.ovlStore -G asm.gkpStore -i file.ovb.gz -job j [opts]
 -O asm.ovlStore path to store to create
 -G asm.gkpStore path to gkpStore for this assembly

 -C config path to previously created ovStoreBuild config data file

 -i file.ovb.gz input overlaps
 -job j index of this overlap input file

 -F f use up to 'f' files for store creation

 -obt filter overlaps for OBT
 -dup filter overlaps for OBT/dedupe

 -e e filter overlaps above e fraction error

 -raw write uncompressed buckets

 DANGER DO NOT USE DO NOT USE DO NOT USE DANGER
 DANGER DANGER
 DANGER This command is difficult to run by hand. DANGER
 DANGER Use ovStoreCreate instead. DANGER
 DANGER DANGER
 DANGER DO NOT USE DO NOT USE DO NOT USE DANGER

ERROR: No overlap store (-O) supplied.
ERROR: No gatekeeper store (-G) supplied.
ERROR: No input (-i) supplied.
ERROR: No job index (-job) supplied.

ovStoreBuild

usage: ovStoreBuild -O asm.ovlStore -G asm.gkpStore [opts] [-L fileList | *.ovb.gz]
 -O asm.ovlStore path to store to create
 -G asm.gkpStore path to gkpStore for this assembly

 -L fileList read input filenames from 'flieList'

 -F f use up to 'f' files for store creation
 -M g use up to 'g' gigabytes memory for sorting overlaps
 default 4; g-0.125 gb is available for sorting overlaps

 -e e filter overlaps above e fraction error
 -l l filter overlaps below l bases overlap length (needs gkpStore to get read lengths!)

Non-building options:
 -evalues input files are evalue updates from overlap error adjustment
 -config out.dat don't build a store, just dump a binary partitioning file for ovStoreBucketizer

ERROR: No overlap store (-o) supplied.
ERROR: No gatekeeper store (-g) supplied.
ERROR: No input overlap files (-L or last on the command line) supplied.

ovStoreDump

usage: ovStoreDump -G gkpStore -O ovlStore ...

There are three modes of operation:
 -d [a[-b]] dump overlaps for reads a to b, inclusive
 -q a b report the a,b overlap, if it exists.
 -p a dump a picture of overlaps to fragment 'a'.

 FORMAT (for -d)

 -coords dump overlap showing coordinates in the reads (default)
 -hangs dump overlap showing dovetail hangs unaligned
 -raw dump overlap showing its raw native format (four hangs)
 -paf dump overlaps in miniasm/minimap format
 -binary dump overlap as raw binary data
 -counts dump the number of overlaps per read

 MODIFIERS (for -d and -p)

 -E erate Dump only overlaps <= erate fraction error.
 -L length Dump only overlaps that are larger than L bases (only for -p picture mode).
 -d5 Dump only overlaps off the 5' end of the A frag.
 -d3 Dump only overlaps off the 3' end of the A frag.
 -dC Dump only overlaps that are contained in the A frag (B contained in A).
 -dc Dump only overlaps that are containing the A frag (A contained in B).
 -v Report statistics (to stderr) on some dumps (-d).
 -unique Report only overlaps where A id is < B id, do not report both A to B and B to A overlap

 -best prefix Annotate picture with status from bogart outputs prefix.edges, prefix.singletons, prefix.edges.suspicious
 -noc With -best data, don't show overlaps to contained reads.
 -nos With -best data, don't show overlaps to suspicious reads.

ERROR: no operation (-d, -q or -p) supplied.
ERROR: no input gkpStore (-G) supplied.
ERROR: no input ovlStore (-O) supplied.

ovStoreIndexer

usage: ovStoreIndexer ...
 -O x.ovlStore path to overlap store to build the final index for
 -F s number of slices used in bucketizing/sorting

 -t x.ovlStore explicitly test a previously constructed index
 -f when testing, also create a new 'idx.fixed' which might
 resolve rare problems

 -nodelete do not remove intermediate files when the index is
 successfully created

 DANGER DO NOT USE DO NOT USE DO NOT USE DANGER
 DANGER DANGER
 DANGER This command is difficult to run by hand. DANGER
 DANGER Use ovStoreCreate instead. DANGER
 DANGER DANGER
 DANGER DO NOT USE DO NOT USE DO NOT USE DANGER

ERROR: No overlap store (-O) supplied.
ERROR: One of -F (number of slices) or -t (test a store) must be supplied.

ovStoreSorter

usage: ovStoreSorter ...
 -O x.ovlStore path to overlap store to build the final index for
 -G asm.gkpStore path to gkpStore for this assembly

 -F s number of slices used in bucketizing/sorting
 -job j m index of this overlap input file, and max number of files

 -M m maximum memory to use, in gigabytes

 -deleteearly remove intermediates as soon as possible (unsafe)
 -deletelate remove intermediates when outputs exist (safe)

 -force force a recompute, even if the output exists

 DANGER DO NOT USE DO NOT USE DO NOT USE DANGER
 DANGER DANGER
 DANGER This command is difficult to run by hand. DANGER
 DANGER Use ovStoreCreate instead. DANGER
 DANGER DANGER
 DANGER DO NOT USE DO NOT USE DO NOT USE DANGER

ERROR: No overlap store (-O) supplied.
ERROR: no slice number (-F) supplied.
ERROR: no max job ID (-job) supplied.

overlapConvert

usage: overlapConvert [options] file.ovb[.gz]

 -G gkpStore (needed for -coords, the default)

 -coords output coordiantes on reads
 -hangs output hangs on reads
 -raw output raw hangs on reads
ERROR: -coords mode requires a gkpStore (-G)
ERROR: no overlap files supplied

overlapImport

usage: overlapImport [options] ascii-ovl-file-input.[.gz]

Required:
 -G name.gkpStore path to valid gatekeeper store

Output options:
 -o file.ovb output file name
 -O name.ovlStore output overlap store
Format options:
 -legacy 'CA8 overlapStore -d' format
 -coords 'overlapConvert -coords' format (not implemented)
 -hangs 'overlapConvert -hangs' format (not implemented)
 -raw 'overlapConvert -raw' format

Input file can be stdin ('-') or a gz/bz2/xz compressed file.

ERROR: need to supply a gkpStore (-G).
ERROR: need to supply a format type (-legacy, -coords, -hangs, -raw).

overlapInCore

* No kmer length supplied; -k needed!
ERROR: No output file name specified
USAGE: overlapInCore [options] <gkpStorePath>

-b <fn> in contig mode, specify the output file
-c contig mode. Use 2 frag stores. First is
 for reads; second is for contigs
-G do partial overlaps
-h <range> to specify fragments to put in hash table
 Implies LSF mode (no changes to frag store)
-I designate a file of frag iids to limit olaps to
 (Contig mode only)
-k if one or two digits, the length of a kmer, otherwise
 the filename containing a list of kmers to ignore in
 the hash table
-l specify the maximum number of overlaps per
 fragment-end per batch of fragments.
-m allow multiple overlaps per oriented fragment pair
-M specify memory size. Valid values are '8GB', '4GB',
 '2GB', '1GB', '256MB'. (Not for Contig mode)
-o specify output file name
-P write protoIO output (if not -G)
-r <range> specify old fragments to overlap
-t <n> use <n> parallel threads
-u allow only 1 overlap per oriented fragment pair
-w filter out overlaps with too many errors in a window
-z skip the hopeless check

--maxrate <n> only output overlaps with fraction <n> or less error (e.g., 0.06 == 6%)
--minlength <n> only output overlaps of <n> or more bases

--hashbits n Use n bits for the hash mask.
--hashstrings n Load at most n strings into the hash table at one time.
--hashdatalen n Load at most n bytes into the hash table at one time.
--hashload f Load to at most 0.0 < f < 1.0 capacity (default 0.7).

--maxreadlen n For batches with all short reads, pack bits differently to
 process more reads per batch.
 all reads must be shorter than n
 --hashstrings limited to 2^(30-m)
 Common values:
 maxreadlen 2048->hashstrings 524288 (default)
 maxreadlen 512->hashstrings 2097152
 maxreadlen 128->hashstrings 8388608

--readsperbatch n Force batch size to n.
--readsperthread n Force each thread to process n reads.

overlapInCorePartition

HASH: 0 reads or 0 length.
REF: 0 reads or 0 length.

overlapPair

usage: overlapPair ...
 -G gkpStore Mandatory, path to gkpStore

Inputs can come from either a store or a file.
 -O ovlStore
 -O ovlFile

If from an ovlStore, the range of reads processed can be restricted.
 -b bgnID
 -e endID

Outputs will be written to a store or file, depending on the input type
 -o ovlStore
 -o ovlFile

 -erate e Overlaps are computed at 'e' fraction error; must be larger than the original erate
 -partial Overlaps are 'overlapInCore -G' partial overlaps
 -memory m Use up to 'm' GB of memory

 -t n Use up to 'n' cores

Advanced options:

 -invert Invert the overlap A <-> B before aligning (they are not re-inverted before output)

prefixEditDistance-matchLimitGenerate

usage: prefixEditDistance-matchLimitGenerate minEvalue [maxEvalue [step]]
 computes overlapper probabilities for minEvalue <= eValue <= maxEvalue'
 eValue 100 == 0.01 fraction error == 1% error

readConsensus

usage: readConsensus ...
 -G gkpStore Mandatory, path to gkpStore

Inputs can come from either an overlap or a tig store.
 -O ovlStore
 -T tigStore tigVers

If from an ovlStore, the range of reads processed can be restricted.
 -b bgnID
 -e endID

Outputs will be written as the full multialignment and the final consensus sequence
 -c output.cns
 -f output.fastq

 -erate e Overlaps are computed at 'e' fraction error; must be larger than the original erate
 -memory m Use up to 'm' GB of memory

 -t n Use up to 'n' cores

ERROR: no gatekeeper (-G) supplied.
ERROR: no inputs (-O or -T) supplied.
ERROR: no outputs (-c or -f) supplied.

simple

no input given with '-i'
no output given with '-o'

splitReads

usage: splitReads -G gkpStore -O ovlStore -Ci input.clearFile -Co output.clearFile -o outputPrefix]

 -G gkpStore path to read store
 -O ovlStore path to overlap store

 -o name output prefix, for logging

 -t bgn-end limit processing to only reads from bgn to end (inclusive)

 -Ci clearFile path to input clear ranges (NOT SUPPORTED)
 -Co clearFile path to output clear ranges

 -e erate ignore overlaps with more than 'erate' percent error

 -minlength l reads trimmed below this many bases are deleted

tgStoreCoverageStat

usage: tgStoreCoverageStat -G gkpStore -T tigStore version -o output-prefix [-s genomeSize] ...

 -G <G> Mandatory, path G to a gkpStore directory.
 -T <T> <v> Mandatory, path T to a tigStore, and version V.
 -o <name> Mandatory, prefix for output files.
 -s <S> Optional, assume genome size S.

 -n Do not update the tigStore (default = do update).
 -u Do not estimate based on N50 (default = use N50).

 -L Be leniant; don't require reads start at position zero.

No gatekeeper store (-G option) supplied.
No input tigStore (-T option) supplied.
No output prefix (-o option) supplied.

tgStoreDump

usage: tgStoreDump -G <gkpStore> -T <tigStore> <v> [opts]

STORE SELECTION (mandatory)

 -G <gkpStore> path to the gatekeeper store
 -T <tigStore> <v> path to the tigStore, version, to use

TIG SELECTION - if nothing specified, all tigs are reported
 - all ranges are inclusive.

 -tig A[-B] only dump tigs between ids A and B
 -unassembled only dump tigs that are 'unassembled'
 -bubbles only dump tigs that are 'bubbles'
 -contigs only dump tigs that are 'contigs'
 -nreads min max only dump tigs with between min and max reads
 -length min max only dump tigs with length between 'min' and 'max' bases
 -coverage c C g G only dump tigs with between fraction g and G at coverage between c and C
 example: -coverage 10 inf 0.5 1.0 would report tigs where half of the
 bases are at 10+ times coverage.

DUMP TYPE - all dumps, except status, report on tigs selected as above

 -status the number of tigs in the store

 -tigs a list of tigs, and some information about them

 -consensus [opts] the consensus sequence, with options:
 -gapped report the gapped (multialignment) consensus sequence
 -fasta report sequences in FASTA format (the default)
 -fastq report sequences in FASTQ format

 -layout [opts] the layout of reads in each tig
 if '-o' is supplied, three files are created, otherwise just the layout is printed to stdout
 -gapped report the gapped (multialignment) positions
 -o outputPrefix write plots to 'outputPrefix.*' in the current directory

 -multialign [opts] the full multialignment, output is to stdout
 -w width width of the page
 -s spacing spacing between reads on the same line

 -sizes [opts] size statistics
 -s genomesize denominator to use for n50 computation

 -coverage [opts] read coverage plots, one plot per tig
 -o outputPrefix write plots to 'outputPrefix.*' in the current directory

 -depth [opts] a histogram of depths
 -single one histogram per tig

 -overlap read overlaps
 -thin overlap report regions where the (thickest) read overlap is less than 'overlap' bases

 -overlaphistogram a histogram of the thickest overlaps used
 -o outputPrefix write plots to 'outputPrefix.*' in the current directory

tgStoreFilter

this is obsolete. do not use.

tgStoreLoad

usage: tgStoreLoad -G <gkpStore> -T <tigStore> <v> [input.cns]

 -G <gkpStore> Path to the gatekeeper store
 -T <tigStore> <v> Path to the tigStore and version to add tigs to

 -L <file-of-files> Load the tig(s) from files listed in 'file-of-files'

 -n Don't replace, just report what would have happened

 The primary operation is to replace tigs in the store with ones in a set of input files.
 The input files can be either supplied directly on the command line or listed in
 a text file (-L).

 A new store is created if one doesn't exist, otherwise, whatever tigs are there are
 replaced with those in the -R file. If version 'v' doesn't exist, it is created.

 Even if -n is supplied, a new store is created if one doesn't exist.

 To add a new tig, give it a tig id of -1. New tigs must be added to the latest version.
 To delete a tig, remove all children, and set the number of them to zero.

ERROR: no gatekeeper store (-G) supplied.
ERROR: no tig store (-T) supplied.
ERROR: no input tigs (-R) supplied.

tgTigDisplay

usage: tgTigDisplay -G gkpStore -t tigFile

trimReads

usage: trimReads -G gkpStore -O ovlStore -Co output.clearFile -o outputPrefix

 -G gkpStore path to read store
 -O ovlStore path to overlap store

 -o name output prefix, for logging

 -t bgn-end limit processing to only reads from bgn to end (inclusive)

 -Ci clearFile path to input clear ranges (NOT SUPPORTED)
 -Co clearFile path to ouput clear ranges

 -e erate ignore overlaps with more than 'erate' percent error

 -ol l the minimum evidence overlap length
 -oc c the minimum evidence overlap coverage
 evidence overlaps must overlap by 'l' bases to be joined, and
 must be at least 'c' deep to be retained

 -minlength l reads trimmed below this many bases are deleted

utgcns

usage: utgcns [opts]

 INPUT
 -G g Load reads from gkStore 'g'
 -T t v p Load unitigs from tgStore 't', version 'v', partition 'p'.
 Expects reads will be in gkStore partition 'p' as well
 Use p='.' to specify no partition
 -t file Test the computation of the unitig layout in 'file'
 'file' can be from:
 'tgStoreDump -d layout' (human readable layout format)
 'utgcns -L' (human readable layout format)
 'utgcns -O' (binary multialignment format)

 -p package Load unitig and read from 'package' created with -P. This
 is usually used by developers.

 ALGORITHM
 -quick No alignments, just paste read sequence into the unitig positions.
 This is very fast, but the consensus sequence is formed from a mosaic
 of read sequences, and there can be large indel. This is useful for
 checking intermediate assembly structure by mapping to reference, or
 possibly for use as input to a polishing step.
 -pbdagcon Use pbdagcon (https://github.com/PacificBiosciences/pbdagcon).
 This is fast and robust. It is the default algorithm. It does not
 generate a final multialignment output (the -v option will not show
 anything useful).
 -utgcns Use utgcns (the original Celera Assembler consensus algorithm)
 This isn't as fast, isn't as robust, but does generate a final multialign
 output.

 OUTPUT
 -O results Write computed tigs to binary output file 'results'
 -L layouts Write computed tigs to layout output file 'layouts'
 -A fasta Write computed tigs to fasta output file 'fasta'
 -Q fastq Write computed tigs to fastq output file 'fastq'

 -P package Create a copy of the inputs needed to compute the unitigs. This
 file can then be sent to the developers for debugging. The unitig(s)
 are not processed and no other outputs are created. Ideally,
 only one unitig is selected (-u, below).

 TIG SELECTION (if -T input is used)
 -u b Compute only unitig ID 'b' (must be in the correct partition!)
 -u b-e Compute only unitigs from ID 'b' to ID 'e'
 -f Recompute unitigs that already have a multialignment
 -maxlength l Do not compute consensus for unitigs longer than l bases.

 PARAMETERS
 -e e Expect alignments at up to fraction e error
 -em m Don't ever allow alignments more than fraction m error
 -l l Expect alignments of at least l bases
 -maxcoverage c Use non-contained reads and the longest contained reads, up to
 C coverage, for consensus generation. The default is 0, and will
 use all reads.

 LOGGING
 -v Show multialigns.
 -V Enable debugging option 'verbosemultialign'.

ERROR: No gkpStore (-G) and no package (-p) supplied.
ERROR: No tigStore (-T) OR no test unitig (-t) OR no package (-p) supplied.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Canu

_static/up-pressed.png

_static/up.png

_static/plus.png

